Publication No. 03-071-054

AN INVESTIGATION OF THE CURRENT STATUS OF CITRUS PLANTINGS ON RECLAIMED LAND IN CENTRAL FLORIDA

Prepared By
Zellars-Williams, Inc.
Under a Grant Sponsored by the Florida Institute of Phosphate Research Bartow, Florida

March 1988

The Florida Institute of Phosphate Research was created in 1978 by the Florida Legislature (Chapter 378.101, Florida Statutes) and empowered to conduct research supportive to the responsible development of the state's phosphate resources. The Institute has targeted areas of research responsibility. These are: reclamation alternatives in mining and processing, including wetlands reclamation, phosphogypsum storage areas and phosphatic clay containment areas; methods for more efficient, economical and environmentally balanced phosphate recovery and processing; disposal and utilization of phosphatic clay; and environmental effects involving the health and welfare of the people, including those effects related to radiation and water consumption.

FIPR is located in Polk County, in the heart of the central Florida phosphate district. The Institute seeks to serve as an information center on phosphate-related topics and welcomes information requests made in person, by mail, or by telephone.

Research Staff

Executive Director

Richard F. McFarlin

Research Directors

G. Michael Lloyd Jr.

Gordon D. Nifong
Steven G. Richardson
Hassan El-Shall
Robert S. Akins
-Chemical Processing
-Environmental Services
-Reclamation
-Beneficiation
-Mining

Florida Institute of Phosphate Research 1855 West Main Street Bartow, Florida 33830
(863) 534-7160

FINAL REPORT

Dr. A. H. Krezdorn, Professor Emeritus College of Agriculture, University of Florida Gainesville, Florida

Thomas P. Oxford and James R. Moon The Zellars-Williams Company Lakeland, Florida

Prepared for

FLORIDA INSTITUTE OF PHOSPHATE RESEARCH 1855 West Main Street Bartow, Florida 33830
Contract Manager: Dr. David J. Robertson

DISCLAIMER

The contents of this report are reproduced herein as received from the contractor.

The opinions, findings and conclusions expressed herein are not necessarily those of the Florida Institute of Phosphate Research, nor does mention of company names or products constitute endorsement by the Florida Institute of Phosphate Research.

Abstract

PERSPECTI VE Davi d J. Robertson, Ph. D. Fl orida Institute of Phosphate Research Project Manager

Despite the fact that surface mining for phosphate ore in the Bone Valley of central Fl orida is geographically coi ncident with the state's nost productive citrus-growing area, little reclai ned Iand has been devoted to citrus groves. Citrus requires a well-drai ned, but not particularly fertile soil. It also requires a site that is free from prol onged sub-freezing temperatures. Traditionally, the best citrus I and in central FI orida has been the sand hills of the Lake Wbles and Winter Haven Ridges, preferably in areas bordered on the north by a lake for cold protection. Nearly all of the best citrus land has either al ready been planted in citrus or devel oped for other purposes. Mreover, in recent years a consi derable acreage of prime citrus Iand has been lost to urbani zation.

Since citrus grows best in well-drai ned soils with minimal quantities of clay, quartz sand tailings from phosphate ore beneficiation nay be a good nedi umfor citrus if properly amended. These same characteristics, however, make tailings a poor soil for general agriculture. In fact, sand tailings are rarely left exposed on the surface of reclai ned I and any longer except where the droughty nature of the naterial is an asset, as in xeric ecosystem reclamation. Mbre commonly, tailings are used to fill ming cuts, then are capped with a layer of overburden to improve soil fertility, structure, and noi sture retention.

G ven the poor agricultural character of the sand, it seens anonal ous that the maj ority of agricultural research on recl ai med I and until recently has been conducted on tailings. In May 1968, Hortenstine and Rothwell, two researchers from the Uni versity of FI orida, incorporated composted municipal waste and commercial fertilizer into sand tailings pl ots and pl anted sorghum and oats. Cation exchange capacity, water hol ding capacity, conductivity, and organic matter content were increased by the compost, but yi el ds renai ned poor. When fertilizer was added to the compost, yi el ds increased greatly over treatnents using either compost or fertilizer al one (Hortenstine and Rothwell 1972).

Two other Uni versity of Fl orida investigators, Mslevy and Bl ue (1981), began similar experiments on sand tailings in 1976. Instead of using muni ci pal waste compost, Mslevy and Bl ue experimented with phosphatic cl ay, cl ay and sewage sl udge, and clay and topsoil. Their experi nental plants included tropical forage grasses, forage legunes, and summer annual grasses. In general, amending the tailings with phosphatic clay and sewage sludge or topsoil produced better yields of the grasses, al though yieldincreases in the perenni al species
di sappeared after the second year. The forage legunes nere beset with problens, but generally showed little response to the soil amendments. Nonethel ess, the results indicated that rel ativel y low forage yi el ds of good quality and adequate nutritional content for beef cattle can be produced on tailings.

In 1986, the Institute sponsored the Zellars- Willians Company of Lakel and to st udy ci trus planted on recl ai med I and. Thi s report presents the findings of the survey. Zellars-Wilians identified 23 pl antings on mined and recl ai ned land. Mbst of the plantings are snall (less than 30 acres), and nost are on overburden, al though sone are on sand tailings, tailings capped with overburden, and on a mixure of sand tailings and phosphatic clay. Contrary to widely held opinion, Zellars-WIlians found that nost of the groves are performing at least as well as groves established on unmined land in the same area, and the perception that citrus groves are not viable following recl anati on may be the result of a few highly visible, untended groves on poor soil that have failed in recent years.

The Institute is providing support for another citrus-rel ated project, but the research is not being conducted on recl ai med land. Researchers at the U.S. Department of Agriculture's Agricultural Research Center in Orlando have indications that soils rich in cal ci umtend to suppress root rot di seases. These scientists are trying to devel op citrus soils with improved fertility and di sease suppressi veness through the addition of cal ci umsulfate in the form of phosphogypsum a waste from the manufacture of phosphate fertilizer. Phosphatic clay is al so being incorporated in the soil to improve the noi sture retention.

In this project, "Use of Phosphatic Clay and Phosphogypsum to Modify Soils for Improved Nutrition, Soil Structure, and a Suppressiveness to Citrus Root Di seases" (FIPR \#85-03-064), the two princi pal amendments have been mixed deeply into the soil in new plantings al ong Florida's east coast and near Bartow The plan of study calls for nonitoring tree heal th, fruit yield, soil microbi ol ogy, and physical characteristics of the soil over a period of three years with support from the Institute and for an additional ten years afterward.

Ref er ences

Hortenstine, C. C. and D. F. Rothwel I. 1972. Use of muni ci pal compost in recl anation of phosphate-ming sand tailings. J. Env. Qual . 1(4) : 415-418.

Mslevy, P. and WG Bl ue. 1981. Recl anation of quartz sand tailings from phosphate mini ng: I. Tropi cal forage grasses; II. Forage I egunes: III. Sumer-annual grasses. J. Env. Qual. 10(4): 449-53, 453-56, 457-60.

Table of Contents

Page
EXECUTIVE SUMMARY 1
INTRODUCTION 3
OB JECTIVES 4
PROCEDURE 5
Identification of Plantings 5
Details of Planting Site History and Characteristics 6
Current Status of Plantings 6
Laboratory Analyses 8
RESULTS AND DISCUSSION 8
Site History and Characteristics 8
Planting Size and Number 8
Reclamation Method 9
Horticultural Characteristics 10
Soil Analyses 11
Freeze Damage 13
Management Practices 14
Tree Performance 15
IMC 3 and 4 15
IMC 2 16
Hill Grove 16
Hemphill 17
Shady Grove Nursery 1 and 3 17
IMC 17
BP-L-1 18
BP-L-SP-2 18
Agrico FG 10 19
Summary of Tree Performance 19
SITE LOCATION MAP
APPENDIX 1 - SOIL CLASSIFICATION AND ANALYSIS
Table 1.1
Table 1.2
Table 1.3
Table 1.4
APPENDIX 2 - CITRUS PLANTINGS IDENTIFIED
Table 2.1
Field Survey Data

EXECUTIVE SUMMARY

1. The search for unidentified parcels was thorough. Twenty-three plantings of citrus on land reclaimed from phosphate mined ares were located.
2. These plantings were relatively small, ranging from 0.75 to 80 acres. Over 50% of the plantings were 30 acres or less and only three were larger than 50 acres.
3. Most of the plantings were on overburden and only one was on sand tailings. Some were on sand tailings with an overburden cap and two were a sand tailings-phosphatic clay "mix" of approximately a 4:1 or higher ratio. Several plantings were among finger lakes and one consisted of sand tailings covered with overburden and capped with 8 -inches of trucked in top soil.
4. All plantings were visited and evaluated and 11, which are representative of the plantings, were selected for more detailed study.
5. Observations and soil analyses data showed cl early that terms such as overburden and sand tailings are very general. and the soil characteristics of each varied considerably.
6. The reclaimed sites were well-drained to over-drained and two had pockets of fine textured material that resulted in wet spots and tree decline.
7. Freeze damage during the past few years complicated the evaluation of some groves.
8. It is obvious that a number of reclaimed sites had been elevated above the surrounding ones and given a slope that made them warmer. The finger lake sites were al so quite warm and undamaged. The ability to
produce reclaimed sites that are warmer than surrounding ones should be considered if citrus is to be produced on them.
9. The successful plantings found on sites reclaimed with overburden indicate clearly this type of reclamation is sound. Those plantings on overburden that failed were due to lack of care and not to soil characteristics.
10. The experimental sand-clay mix sites can not be evaluated with any confidence because trees are too young. From the growth made to date, and the soil analyses, it appears trees can be grown successfully on such sites if proper care is given, including irrigation.
11. Trees on sand tailings with an overburden cap are also too young to assess with confidence. Much will depend on the depth of the cap and the nature of the overburden. Uneven settling and wet spots due to pockets of clay appear to be problems.
12. There is insufficient information on which to evaluate sand tailings alone as a soil for citrus. From the limited observations made, it is speculated that trees could be successfully produced on sand tailings if adequate irrigation water is applied and care given. costs of production would, however, be higher than on better soils and the plantings might not be profitable.

The only planting on sand tailings (IMC 3) was not irrigated or given proper care. It was abandoned in 1962.
13. All things considered, citrus appears a very good candidate crop for properly reclaimed land. Citrus tolerates a wide range of soil types, but good water drainage and a warm site are absolute necessities. Even overdrained coarse sands can be utilized, but profitability of citrus on them becomes questionable.

INTRODUCTION

In April 1986, the Florida Institute of Phosphate Research selected the Zellars-Williams Company and Dr. A. H. Krezdorn to conduct a survey of citrus plantings on reclaimed phosphate lands. The Institute specified the objectives to be met by the study, and provided a preliminary listing of parcels thought to have notable citrus plantings.

The investigation was conducted during Summer and Fall, 1986, and all objectives were fully met. Fifteen parcels beyond the original eight identified by the Institute were found and evaluated - data for all 23 are presented in this report.

The plantings investigated represented a broad spectrum of soil and drainage conditions, site histories, and grove management practices. In many instances, successful groves on reclaimed land performed at least as well as counterparts on unmined land. Where observed plantings on reclaimed land have failed, the cause has primarily been lack of grove maintenance, particularly irrigation or abandonment. With proper planning and proper care, citrus groves on mined phosphate land appear to represent a viable and important reclamation alternative.

Over 130,000 acres of land have been mined for phosphate in Polk County alone, and it is estimated that 200,000 acres will have been mined by the year 2000. By that date, mining for phosphate will have been completed in this area and operations will have moved to counties farther south.

The mining operation consists of stripping off up to 60 feet of soil (the overburden) in order to mine and hydraulically transport the phosphate ore or matrix underneath. In the hydraulic processing operation, phosphatic clays and sand tailings are waste products. Clays and sand tailings are, respectively, less and greater than approximately 106 microns in diameter.

These are mining and not agricultural terms. The U.S. Department of Agriculture has classified soils on the basis of texture or particle size into 5 categories of sand (very coarse, coarse, medium, fine and very
fine), silt and clay (Table 1.2). A clay, by agricultural standards, has a particle size of 2.0 microns or less, and the phosphatic clays of the mining industry would include very fine sand, silt and clay. Even so, the phosphatic clay residue from mining has many of the properties of clays in that it absorbs and holds much water; it is sticky and plastic, and very difficult to cultivate. The sand tailings include sands ranging from very coarse to fine. They tend, however, to be coarse and overdrained.

The termination of phosphate mining in Polk County and certain adjoining areas after the turn of the century will reduce the county tax base and eliminate many jobs. Prior to reclamation, large areas of land are characterized by open pits, clay setting ponds and piles of sand tailings and overburden. Within the limits imposed by economic feasibility, the phosphate industry has the ability to reclaim these disturbed areas to a wide range of landforms. Much land has already been reclaimed, particularly for pastures. The potential exists to broaden the approach to reclamation, providing better accommodation of Polk Country's non-phosphate future.

OBJ ECTIVES

The general area of phosphate mining is in the heart of the important citrus production and processing region. In fact, phosphate companies have bought citrus orchards underlain by phosphate and exploited the areas for mineral resource recovery.

Citrus is an important crop because of the region's climate and suitable soils. Thus, it would appear reasonable to attempt to reclaim a portion of the mined areas in such a manner that citrus could be economically grown. The phosphate mining activity need be only a temporary land use.

Many years are required to produce a mature citrus orchard. Approximately 25 years are required for sweet orange trees planted at 2.5 x 25 ft . to attain maximum production. About 5 years are required before trees produce sufficient fruit to pay for costs of production. Even at 15×20 ft. spacings, $13-15$ years are required to reach maximum production per acre.

While this does not rule out conducting research with new plantings on land reclaimed in various ways, it does suggest that more immediate answers might be obtained from a study of commercial orchards already planted on reclaimed land.

Thus, the specific objectives of this study were to:

1. Locate all citrus plantings on reclaimed land.
2. Detail the history of the planting site, i.e., the typeof reclamation, scion variety, rootstock, tree spacing and tree age or density of planting.
3. Determine the current condition and productivity of the trees.
4. identify, where possible, the factors that led to the degree of success of the various orchards studied.

PROCEDURE

IDENTIFICATION OF PLANTINGS

The site location map appears at the end of this report. Identification of citrus plantings on reclaimed land was made by Zellars-Williams staff by several methods:

1. File information of 8 identified plantings was used to provide further leads.
2. Aerial photographs taken for the survey of lands mined before July 1, 1975 were reviewed in Tallahassee at the Department of Natural Resources. Several of the citrus plantings on the present known list were identified in that survey and reidentified for a previous Institute-sponsored project, "Radioactivity in Foods Grown on Florida Phosphate Lands".
3. A letter was sent to present mining companies explaining the project and requesting information on any citrus plantings on reclaimed land either before or after July 1, 1975.
4. County agricultural agencies in Polk and Hillsborough Counties were contacted for information on citrus on reclaimed land.
5. Once in the field, a word-of-mouth survey was made to locate citrus plantings on reclaimed land that is no longer owned by mining companies.

DETAILS OF PLANTING SITE HISTORY AND CHARACTERISTICS

1. Letters were sent to owners or managers of citrus plantings identified as growing on reclaimed land, asking for information outlined in Objective 2 in the Introduction. Personal conversation via telephone was also used to obtain this information and to obtain permission to visit and study the plantings.
2. Results from the letters and telephone conversations did not yield all the information requested. Additional information was obtained from a short visit to each planting by Dr. A. H. Krezdorn, the Principal Technical Investigator, and a member of Zellars-Williams staff (week of July 7, 1986).
3. Even with these efforts, some information was not obtained because records of the owners or managers were lacking. As examples, some did not know the rootstock used and yield records were mostly lacking or indefinite.
4. The known details concerning the plantings are given in the field data sheets in Appendix 2.

CURRENT STATUS OF PLANTINGS

A first visit was made to each planting identified as being on reclaimed land, taking care to disinfect vehicle and personnel entering the planting, as appropriate. Of the 24 identified, one planting was found not to exist, and three growers would not permit entrance to their property.

An evaluation was made of the trees and the crop in each planting. The planting was subjectively rated as abandoned, poor, good, and excellent. These terms are defined as follows:

0 Abandoned. Trees receiving no care for several years.
0 Poor. Substandard trees that obviously could not consistently produce profitable crops. Tree vigor is low and foliage is thin.
0 Good. Trees that should produce profitable crops. Foliage dense and vigor moderate to high. Current crop reasonably good and history of good production where records exist.

0 Excellent. Excellent crop on trees, foliage strikingly dense and deep green in color.

These are fairly broad categories, but more finite ones would add nothing to the major answer sought; i.e., whether citrus is or is not being satisfactorily produced on the various parcels of reclaimed land.

Freeze damage not related to reclamation confounded the evaluation at the time. In such cases, the evaluation was based on tree condition and vigor of recovery without any consideration of cropping, unless past records were available.

Information on tree care was not obtained in great detail and varied greatly. By and large, however, it was obvious from the information available that plantings on reclaimed land received essentially the same range of care as that on natural mineral soils. Growers with trees on both reclaimed and natural land did not distinguish between them in their management programs.

After studying the results of visits and information from growers, 11 sites were selected for more detailed study. Thus, a second visit was made to these 11 sites on September $15,16,17,1986$, at which times there were further talks with some of the growers, further examination of the trees, and soil samples were taken.

In order to get representative soil samples, each planting was roughly divided into three sections. Using a standard soil sampling tube, 10 or
more 6-12 inch soil cores were taken across each section of each planting. Samples from each of three sections were aggregated and stored in plastic bags for subsequent physical and chemical analyses.

LABORATORY ANALYSES

The three aggregate samples from each orchard were analyzed for particle size, using a wet sieving method; i.e., each soil sample was washed through a 20 mesh screen with the remainder through a 65 mesh screen, and that remainder through a 325 mesh screen. The 20 , 65 , and 325 mesh screens correspond to particle diameters of 850 , 212 , and 47 microns, respectively.

The soil samples were also analyzed for $\mathrm{pH}, \mathrm{Ca}, \mathrm{Mg}$ and $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ in the ZellarsWilliams laboratory. Standard methods of analyses were essentially the same as those used by the University of Florida's Citrus Research and Education Center at Lake Alfred.

The values obtained for particle size, $\mathrm{pH}, \mathrm{Ca}, \mathrm{Mg}$ and P 2 O 5 are presented in Tables 1.1, 1.3, and 1.4, respectively.

RESULTS AND DISCUSSION

SITE HISTORY AND CHARACTERISTICS

Planting Size and Number

An examination of the data on planting characteristics (Appendix 2) shows clearly there are a limited number of citrus plantings on reclaimed land and that the various plantings are relatively small. Only 23 citrus plantings are on reclaimed land, the largest and smallest of which are 80 and 0.75 acres, respectively. Over 50% of the plantings were 30 acres or less, and only 3 were over 50 acres.

Moreover, the 23 sites represented less than 23 owners because some owners had more than one distinct block of trees on reclaimed land that were sufficiently different to be treated separately. Such a small population
which, as will be shown later, contains a number of widely varying characteristics, precludes a statistical treatment relating tree performance to planting history and characteristics. Instead, conclusions must be drawn from observations and data on a planting by planting basis.

Reclamation Method

There are few well-defined reclamation procedures. Moreover, some of the terms used are very general. Sand tailings can vary considerably in particle size and phosphorus content, depending on the nature of the matrix and the mining technology used, respectively. The soils varied before mining, and stripping off the top 30 to 60 or more feet of soil and backfilling into the pits after mining didn't increase the uniformity.

There is only one site (IMC \#4) that is purely sand tailings, and it has been abandoned since 1962.

One block, owned by Mr. Richard Clark of Bartow, was reclaimed by pumping in sand tailings, covering with overburden and then capping with 8 inches of topsoil that was trucked in. It was well leveled and given a 6 inch per 100 ft . slope. This type of reclamation has produced a superb citrus planting, but was considered an unrealistic way of reclaiming large acreages.

Two plantings owned by Brewster Phosphate Corp. (BP-L-1 and BP-L-SP2), were reclaimed by experimental methods. BPL-1 is about a 4:1 "mix" of sand tailings and phosphatic clay. Layers of phosphatic clay and sand tailings were produced by alternately pumping in phosphatic clay and covering it with a layer of sand tailings which were "sprayed" or floated on, more or less uniformly. Some mixing was accomplished through mechanical leveling. A small amount of overburden was pushed over a small part of the completed area, but the site is essentially a $4: 1$ sand clay mix.

BP-L-SP2 was somewhat similar but not mixed as well. Clay was pumped in, but the sand tailings were spread by pumping them in from one end and allowing them to flow over the clay.

The reason for the sand-spray mix method was to utilize as much of the phosphatic clay as possible. The 4:1 ratio resulted from the material available rather than by intent.

Most of the others were simply pits, backfilled with overburden or with sand tailings and an overburden cap.

One unique situation was the Shady Grove Nursery plantings which were reclaimed with relatively narrow strips of overburden interspersed with water-filled pits to form what are called the finger lakes system of reclamation. Mr. Maynard Leetun, the owner, had mature blocks of sweet oranges and grapefruits growing under this situation.

One future parcel was identified and is scheduled for planting either this Fall or next Spring. Fifty-two hundred trees are scheduled to be planted on a reclaimed Gardinier plot approximately 45 acres in size. The site designation is GAR-FM-82(4).

Horticultural Characteristics

General. Tree spacings were mostly 25 x 25 ft . ; however, a seedling orange planting was $30 \times 35 \mathrm{ft}$. and some spacings were slightly closer than $25 \times 25 \mathrm{ft}$. None of the plants could be considered closely spaced, such as $10 \times 15 \mathrm{ft} .$, by today's standards.

The scion variety was most commonly one of the standard sweet oranges such as Hamlin, Parson Brown, Pineapple or Valencia; however, there was also a sweet orange seedling grove, two navel orange plantings, and blocks of pink and red grapefruit, respectively.

The rootstock was most commonly sour orange; however, there was also Cleopatra mandarin and Carrizo citrange. At the Agrico plantings there was a wide mixture of rootstocks, including Milam lemon, sweet lime, Cleopatra mandarin, and Volkamer lemon. Rough lemon was notably absent; however, one grower listed his rootstock as "sour" lemon. No root sprouts were available for a definite identification.

Thus, the range of planting material and tree spacings is more or less standard and representative of that used in the region.

Tree age also varied widely from 2 years of age to those approximately 40 years old. The plantings were mostly of a commercially productive age. Thus, most of the plantings were old enough to determine their performance with confidence.

Soils. Water drainage appeared to be adequate in the great majority of cases. IMC \#2 appeared to be an exception. Settling had occurred in spots and water was standing in them. Trees in these low spots had either died or declined to a point of uselessness. While no extensive study of the soil and root development in the planting was made, it appeared these low spots contained heavier or more finely textured soils that contributed to the wet spots and tree death. It is likely that better surface drainage developed through better land preparation could have alleviated this problem. This condition also demonstrates the variability of the soil in overburden.

There were al so random wet spots in Agrico FG 10. Here again, there appears to be some settling and wet, sticky spots that are becoming worse as a result of grove traffic during wet periods. This condition is also worsened by the fact the orchard is cleanly cultivated by discing.

Soil Analyses

Soil particle size. The soil particle size data are presented in Table 1.1, and the U.S.D.A. soil classification system in Table 1.2.

The largest portion of the soil in most of the plantings falls into what is Medium sand-the lower portion of Coarse sand by the U.S.D.A. classification system. The next largest portion included Fine sand and Very Fine sand. In a few cases, this portion was larger than the coarser sand fractions. Together, the above categories which ranged in particle diameter from 0.85 - 0.05 mm , accounted for most of the soil. The next largest portion
included the Silt and Clay fractions. The smallest portion included the Very Coarse sand and the upper portion of the Coarse sand fractions.

Only IMC \#2 (the Virginia Carolina) planting had an appreciable portion of the sample in the Very Coarse and upper portion of the Coarse sand category. This was probably due to the common occurrence of pebble size rocks in the soil. This suggests a considerable amount of mining debris was added to the overburden.

This planting also had a higher than usual amount of Silt and Clay. This finer textured portion, which appeared to occur in random pockets, was probably responsible for the wet spots in the planting.

It was noted while sampling that there were pockets of clay of varying size in several of the plantings. This indicates the soil is not uniform. Where these pockets are small they are unimportant, but where they are relatively large they can result in the death of trees due to waterloging.

By and large the particle size values indicate soils that are well-drained and possibly over-drained. However, citrus is often grown of soils of this texture with irrigation.

It is noteworthy that samples from the Hill Planting of Mr. Albert Miles had from 55% to 79% of the soil in the Fine and Very Fine sand category and only very small port ions of coarser sands and clay. This is an excellent soil and undoubtedly is what makes the planting so productive even without irrigation.

Soil pH. There was nothing unusual about soil pH. There had been a question as to whether pH might be unusually high because of lime rock brought to the surface in the mining operations; however, pH values (Table 1.3) were not exceptionally high.

Native Florida sands have pH values of about 4.5, but growers maintain pH's from 5.5 to 7.0 with either high calcium or dolomitic limestone applications every two years.

It is not unusul to find a fairly wide range of pHalues, within the above range, in a given orchard. Spray chemicals, fertilizer, road building material and water source all affect the pH . As examples, water from lakes is acid while that from wells is basic. Growers using sulfur as a pesticide add considerable acid-forming material to the soil.

The pH values in Table 1.3 probably reflect amendments added, such as dolomite, and other materials applied rather than the nature of the soil itself.

Soil Ca and Mg. The Ca values were not unusual while the Mg values were somewhat low. The low $\mathbf{M g}$ values were not reflected in any Mg leaf deficiencies; however, this is not too surprising since plant available soil Mg, which is what was measured, is not always correlated with that actually taken up by the plant.

The data are primarily meaningful in showing the mining and reclamation methods did not, in general, incorporate meaningful amounts of Ca and Mg into the soil.

Soil P205. The P2O5 values represent total rather than plant available phosphorus. Some sites had substantial P2O5 concentration. IMC \#2, for example, contained over 9% P2O5. Even the old, abandoned IMC \#3 sand tailing site had over 7% P2O5. Two of the better plantings which were planted on overburden (Hemphill and Hill) had less than 1\% P2O5, the lowest of any.

All chemical analyses are summarized in Table 1.4 of the Appendix.

Freeze Damage

Florida has recently undergone some of the most damaging freezes in its history. Most of the older groves suffered little to no damage from these freezes, thereby indicating that the region in general and the sites in particular were unusually warm ones.

Some of the younger plantings were, however, damaged severely in the recent freezes. A good example is IMC \#1. Of course, young trees are much more subject to cold damage; however, it is noteworthy that the young trees that were damaged or, killed are growing in isolated locations some distance from other citrus or forest trees. Such locations tend to be colder.' A measure of protection from the freezes was provided in some young orchards with low volume irrigation during the freezes.

It was also evident that most of the older plantings were on sites that were slightly higher than the surrounding area. This resulted from the leveling and backfilling operations. Of course, the plantings among the finger lakes (pits filled with water) were especially warm as a result of the warming effect of these lakes;

Thus, it is obvious that the warmth and desirability of a site can be influenced during the reclamation process.

Management Practices

Weed control measures varied widely, and included trunk to trunk weed control with herbicides, clean cultivation by discing and herbicide use in the tree row, with mowed grass or native cover between the trees. In some cases, hairy indigo had been grown prior to planting citrus and continued to reseed itself in the middles between the trees. The sweet seeding trees were so large that the soil beneath them was largely free of weeds.

Hedging and topping were being conducted in a standard fashion where needed, except for the sweet orange seedling planting (the Hill Grove).

Applications of fertilizer, soil amendments for pH control and pest control fall within the range of that used in other commercial groves of the region. No unusual pest problems were evident. Evidence of blight and tristeza, Florida's two primary tree killers, were notably absent. Conversations with growers and managers indicated their management practices for citrus on reclaimed land and their other groves were essentially the same.

Irrigation was used in some plantings, but not in others. This is true in other groves of the region as well. There is little question but that proper irrigation would almost always measurably improve production. This would most likely be the case where citrus is grown on coarse sands. The abandoned IMC \#4 grove that was planted on sand tailings did not have irrigation.

Thus, management practices, with the important exception of the lack of irrigation in some plantings, were generally sound.

tree performance

A number, but not all of the plantings on reclaimed land, are discussed in some detail below. These plantings were selected because they represent both the extremes of performance and the general status of citrus on reclaimed land.

IMC \#3 and IMC \#4.

The two groves are on overburden and sand tailings, respectively. They are 27 years old, and unirrigated. Both have been abandoned since 1962. In effect, they were never cared for properly and the general concensus is that the plantings were planted for the publicity they generated. Even so, the IMC manager said that large saleable crops had been produced by them from time to time in the past. The trees ultimately suffered from freezes.

It is unfortunate that no care was given to the only planting on sand tailings. The lack of care precludes drawing strong conclusions; however, the relatively large dead trees on these sites suggests they could have been profitable groves with irrigation and care.

Their visibility from a public highway has given many the opinion that citrus on reclaimed land is not feasible.

Quite apart from. the tree performance, it is noteworthy that the sand tailings had a very high phosphate content (Table 1.4) as a result of the
inefficient mining methods used. Also, distribution of soil particle sizes (Table 1.1) doesn't indicate these particular sand tailings are much coarser than other soils analyzed.

IMC \#2.

This historic old (27 years) grove of sweet orange on Cleopatra mandarin rootstock was originally developed by the Virginia Carolina Company on overburden backfill. The very high phosphate content (Table 1.4), however, and the pebble-size rocks that are common suggest it also contains debris from the mining operation.

The orchard was rated poor. This was due in part to random areas of soil that had settled and can hold water. Trees had died or decined to uselessness in these spots. Poor tree performance is al so due to the lack of care given the trees until recently, when a modest program of care was started.

There are no yield records, but the current crop is modestly good. The foliage shows some minor deficiencies, but it is otherwise good, although less dense than in a good orchard. Since the wet spots constitute only a minor part of the grove, it appears the grove could become profitable if proper care, including a low volume irrigation system, is given the trees. Further study might show the low wet Spots could be corrected through drainage.

Hill Grove.

This old ($30-40$ years) sweet orange grove consists of huge trees that have grown together. The trees are beautiful and rated good. The caretaker, Mr. Albert Miles, indicated the grove has been a relatively high-yielding, profitable planting as compared with others under his care, even though it is not irrigated.

The lack of foot rot, to which sweet seedlings are unusually susceptible and the particle sizes resulting from the soil analyses (Table 1) indicate good, but not excessive drainage.

Hemphill_

The Hemphill grove is rated good to excellent. This fine, mature (24 years) planting of Hamlin on sour orange and Cleopatra mandarin rootstock receives excellent care, including irrigation from a low volume system. The owner, Mr. Don Hemphill, keeps good yield records indicating the Hamlins produce about 600 boxes of fruit per acre annually, and that it rates among the best groves under his care.

The soil is overburden and on the basis of both appearance and analyses should produce productive trees.

Part of Mr. Hemphill's planting is on reclaimed land and part is on unmined land. Trees appear identical in both sections.

Shady Grove Nursery \#1 and \#3.

These groves, owned and developed by Mr. Maynard Leetun, rate good to excellent. Site \#1 consists of Pink Marsh grapefruit on Cleopatra, spaced 15 by 25 ft . The crop on the trees was quite heavy and the trees had thick dense foliage. Site \#3 contained mature Hamlin on Cleo.

The trees receive excellent care, including a microjet irrigation system, and the soil, developed from overburden and some leached material, is very good. These plantings are among finger lakes and very warm.

Mr. Leetun also has a small young navel orange on Carrizo citrange planting among the finger lakes and its appearance is excel lent. It should be a fine orchard when mature.

IMC \#1

This is a young (4 years) sweet orange on sour orange rootstock planting on sand tailings with an overburden cap. It has been frozen back severely, but the lower parts of the trees were protected with a low volume irrigation system. The trees have recovered beautifully and are beginning to bear a few fruit. On the basis of tree appearance, this planting is rated good to excellent.

One can only speculate as to the performance of this orchard in the future, but on the basis of the excellent care it is receiving, the tree performance to date, and the soil characteristics, it should perform very well.

BP-L-1.

This is a young (2 years) planting that is experimental in nature. It is planted on land reclaimed by the sand-clay mix method. There are 2 rootstocks, sour orange and Carrizo citrange and 2 scion varieties, Hamlin and Pineapple sweet orange.

There has been limited freeze damage, but on the appearance of the trees the planting is rated good. Soil characteristics and general appearance indicates good drainage.

It would be highly speculative at this time to evaluate the potential profitability of this planting; however, there appears no reason good trees can not be grown on this site.

Whether the 4 to 1 sand tailings-clay mix will prove to be one that will produce trees without excessive fertilizer and water will be determined only with time.

BP-L-SP-2.

This is a sweet orange on sour orange planting that is somewhat similar to BP-L-1; however, the soil mixing was not done as carefully and there is no irrigation system. Tree loss from freezes has been moderately high. There was some, but not extensive, indication of herbicide damage. General tree appearance was rated as poor.

It is doubtful that a profitable orchard can be produced there without irrigation.

Agrico FG 10.

This planting is young (2-3 years) and planted on sand tailings with an overburden cap. This planting has been damaged severely by freezes and many trees were lost. The remaining trees rate poor to good.

The irrigation system is not adequate for protecting all the trees during a freeze.

In addition to the freeze damage, some trees have been killed in wet spots resulting from land settling.

Unless protection from cold is furnished, or the grove experiences a series of warm winters, it will be difficult to produce a uniformly good orchard on this site.

Also, attention must be given to correcting the wet spots which are getting larger due to orchard traffic. It may be necessary to develop a mowed grass cover in the middles used for traffic while the trees are young. The practice of clean cultivation by discing also could result in damage from blowing sand if high winds develop.

This is also an experimental planting, but the results will be of questionable value.

It is also noteworthy that the Carrizo citrange and Volkamer lemon use in part of this planting induce less cold hardiness than stocks such as sour orange, Cleopatra mandarin and Swingle citrumelo.

SUMMARY OF TREE PERFORMANCE

The mature to excellent groves on a number of sites developed from overburden, which varies considerably in its characteristics, leave no doubt that producing citrus on land reclaimed in this manner is feasible.

In fact, developing elevated, sloping sites, or sites among pits filled with water, can add to the warmth and desirability of the site.

In developing groves on overburden, it is well to al low for setting prior to planting so as to avoid the need for correctional procedures later.

There is insufficient evidence from the plantings surveyed to determine whether citrus can be grown economically on sand tailings. There is little question, however, as to whether the trees will grow on such sites if irrigation and proper care are given. The question is one of economics or profitability. Al so, sand tailings vary in their characteristics and some will undoubtedly be more likely candidates for citrus production than others.

Similarly, it has not yet been demonstrated that the sand-clay mix procedure will prove profitable even though there is no reason to suspect trees will not grow and produce well on it with proper care. The main advantages of this procedure would be to utilize some of the clays and produce a soil medium more retentive of moisture and mineral elements.

Where plantings on reclaimed land currently in existence have failed, the cause has primarily been lack of care, and particularly lack of irrigation.

LEGEND

NAME	SITE \#
BP-L-1	1
BP-L-SP2	2
H. COOPER	3
IMC \#1	4
IMC \#2	5
FG-3	6
FG-10	7
IMC \#3	8
IMC \#4	9
HILL BLOCK	10
ISLAND BLOCK	11
C. BARNETT	12
A. WINDHAM	13
PIPKIN SOUTH	14
PIPKIN NORTH	15
SHADY GROVES \#1	16
SHADY GROVES \#2	17
SHADY GROVES \#3	18
PIT GROVE	19
DANA GROVE	20
CLARK GROVE	21
BP-H-1	22
DOBBS GROVE	23
GAR-FM-82(4)	24

SCALE: $1 / 4^{*}=$: MILE

APPENDIX 1
SOIL CLASSIFICATION AND ANALYSIS

Table 1.1

Table 1.2
Table 1.3
Table 1.4

particle size analysis from eleven selected CITRUS PLANTINGS ON RECLAIMED LAND

Planting Name	Sample Number	\% by Weight within size range indicated				(micron) _(US Tyler)
		$\begin{array}{r} +850 \\ +20 \text { mesh } \\ \hline \end{array}$	$\begin{aligned} & -850 x+212 \\ & -20 \times 65 \\ & \hline \end{aligned}$	$\begin{aligned} & -212 \times+47 \\ & -65 \times 325 \\ & \hline \end{aligned}$	$\begin{array}{r} -47 \\ -325 \\ \hline \end{array}$	
$B P-L-1$	1	2.9	59.5	30.4	7.2	
	2	3.6	64.8	25.8	5.8	
	3	4.4	62.8	26.4	6.4	
BP-L-SP2	1	2.9	58.5	32.1	6.5	
	2	2.4	58.7	37.1	1.8	
	3	. 0	62.3	37.7	. 0	
IMC \#1	1	4.7	55.8	33.2	6.3	
	2	2.3	59.4	31.0	7.3	
	3	3.7	60.3	30.3	5.7	
IMC \#2	1	17.9	38.2	32.0	11.9	
	2	14.5	41.6	31.1	12.8	
	3	15.3	38.6	33.7	12.4	
IMC \#3	1	1.7	50.4	31.7	16.2	
	2	. 2	51.0	28.8	20.0	
	3	4.4	55.4	29.3	10.9	
IMC \#4	1	1.7	65.6	31.3	1.4	
	2	1.1	61.9	34.8	2.2	
	3	2.8	73.1	22.6	1.5	
Agrico FG-10	1	1.1	50.8	33.4	14.7	
	2	. 7	52.5	37.5	9.3	
	3	1.4	52.3	39.6	6.7	
Hemphill (Don Hemphill)	1	1.4	39.7	55.2	3.7	
	2	. 7	34.8	57.4	7.0	
	3	. 4	27.1	67.6	4.9	
Hill Grove (Albert Miles)	1	. 6	41.2	54.8	3.3	
	2	1.1	35.0	59.5	4.4	
	3	. 4	14.8	78.7	6.1	
Shady Grove Nursery \#1	1	2.8	44.0	44.1	9.1	
	2	4.2	48.9	39.4	7.5	
	3	3.8	44.5	41.2	10.5	
Shady Grove Nursery \#2	1	4. 8	48.8	33.9	12.5	
	2	8.2	41.0	36.2	14.7	
	3	5.2	39.2	47.8	7.9	

Refer to Table 1.2 for comparison of soil classification to grain size. In our analysis, categories were identified as follows:

$$
\begin{array}{ll}
+20 \text { mesh } & \text { very coarse sand and upper portion of coarse sand } \\
-20 x+65 & \text { lower portion of coarse } \\
-65 x+325 & \text { fine and very fine sand } \\
-325 & \text { silt and clay }
\end{array}
$$

Table 1.2
CLASSIFICATION OF SOIL PARTICLES

ACCORDING TO THE U.S. SYSTEM ${ }^{1}$

Soil Separates

Very coarse sandCoarse sandMedium sand
Fine sand
Very fine sand
Silt
Clay
Diameter Limits (mm) ${ }^{2}$
2.00-1.00$1.00-0.50$
$0.50-0.25$
$0.25-0.10$
$0.10-0.05$
$0.05-0.002$
below 0.002
1From Soil Survey Manual (U.S. Department of AgricultureHandbook No. 18, 1951) P 207.
2 Multiply by 1,000 to convert to microns.

```
Table 1.3
SOIL pH values from eleven SElECTED
CITRUS PLANTINGS ON RECLAIMED LAND
```

Planting Name	Sample Number	pH	Planting Name	Sample Number	pH
BP-L-1	1	7.4	Agrico	1	7.0
	2	7.6	FG 10	2	7.0
	3	7.5		5	6.1
BP-L-SP2	1	6.2	Hemphill	1	6.6
	2	6.3	Don Hemphill	2	6.2
	,	6.2		3	5.6
IMC \#1	1	6.6	Hill Grove	1	6.1
	2	7.1	Albert Miles	2	5.9
	3	6.9		3	6.3
IMC \#2	1	6.5	Shady Grove	1	5.0
	2	5.6	Nursery \#1	2	5.5
	3	6.2		3	5.6
IMC \#3	1	6.4	Shady Grove		4.8
		6.5	Nursery \#3	2	5.7
	3	6.4		3	5.0

CHEMICAL ANALYSIS FROM ELEVEN SELECTED CITRUS PLANTINGS ON RECLAIMED LAND

Planting Name	Sample Number	$\stackrel{\%}{ } \mathrm{P}_{2} \mathrm{O}_{5}$	$\underline{\mathrm{Ca}(\mathrm{ppm})}$	$\underline{\mathrm{Mg}}$ (ppm)
		(1)	(2)	(2)
BPL-L-1	1	4. 80	1801	68
	2	4. 73	1613	76
	3	4.61	1794	110
BP-L-SP2	1	1.03	1171	20
	2	0.98	1667	49
	3	0.40	1283	10
IMC \# 1	1	2.12	3525	49
	2	1.74	2895	10
	3	1.74	2895	10
IMC \#2	1	9.56	3065	129
	2	8.71	2966	69
	3	9.93	3227	98
IMC \#3	,	4.22	3457	123
	2	2.57	5197	260
	3	2.17	4352	363
IMC \#4	1	6.78	1591	40
	2	7.25	1499	37
	3	7.88	1391	14
Agrico FG-10	1	1.33	2489	189
	2	1.03	2175	168
	3	1.91	1639	96
Hemphill (Don Hemphill)	1	0.85	1799	28
	2	0.68	2173	99
	3	0.21	993	10
Hill Grove (Albert Miles)	1	0.29	1679	10
	2	0.65	1462	10
	3	0.61	2154	10
Shady Grove Nursery \#1	1	1.47		64
	2	1.95	3198	110
	3	1.76	3449	153
Shady Grove Nursery \#3	1	3.36	5356	427
	2	5.04	2908	103
	3	5.43	1795	40

(1) Analysed as "total" $\mathrm{P}_{2} \mathrm{O}_{5}$.
(2) Analysed as "available" Ca and Mg.

APPENDIX 2
CITRUS PLANTINGS IDENTIFIED

Table 2.1
Field Survey Data

Table 2.1
Citrus planting on reclaimed land

Name	Location		Owner
	County	S. - T. - R.	
BP-L-1	Hillsborough	28-31S-22E	Brewster
BP-L-SP2	Hillsborough	10-31S-22E	Brewster
H. Cooper	Hillsborough	30-29S-22E	Hilda Cooper
IMC \#1	Hillsborough	11-31S-22E	IMC
IMC \#2	Polk	16-30S-25E	IMC
FG-3	Polk	28, 29-32S-23E	Agrico
FG-10	Polk	29-32S-23E	Agrico
IMC \#3	Polk	27-29S-25E	IMC
IMC \#4	Polk	28-295-25E	IMC
Hill Block	Hillsborough	28-295-22E	$\begin{aligned} & \text { Hopewell (Caretaker- } \\ & \text { A. Miles) } \end{aligned}$
Island Block	Hillsborough	28-295-22E	$\begin{aligned} & \text { Hopewell (Caretaker- } \\ & \text { A. Miles) } \end{aligned}$
C. Barnett	Polk	$\begin{aligned} & 25-31 S-25 E) \\ & 30-315-26 E) \end{aligned}$	Conley Barnett
A. Windham	Polk	31-31S-26E	Alvy Windham
Pipkin South	Polk	7-29S-24E	W. A. Pipkin Estate
Pipkin North	Polk	12-29S-23E	W. A. Pipkin Estate
Shady Groves \#1	Hillsborough	7-305-22E	Maynard Leetun
Shady Groves \#2	Hillsborough	7-30S-22E	Maynard Leetun
Shady Groves \#3	Hillsborough	6-30S-22E	Maynard Leetun
Pit Grove	Hillsborough	7-30S-22E	Don Hemphill
Dana Grove	Hillsborough	7,12-30S-22E	Unknown
Clark Grove	Polk	7-30S-25E	Richard Clark
BP-H-1	Polk	27-315-23E	Brewster
Dobbs Grove	Polk	27-315-23E	W. A. Dobbs
GAR-FM-82(4) ${ }^{-}$	Polk	18-325-25E	Gardinier

GROVE NAME : BP-L-I (BREWSTER PHOSPHATES-LONESOME-1)
LOCATION: SEC 28-TWSP 31S-RG 22E WEST OF FT. LONESOME MI NE OFF I CE DATE: 07/08/86 INSPECTOR: AHK/TPO/HMC OWNER: BREWSTER PHOSPHATES
CONTACT: BILL TROYER
PHONE NO.: 813-634-5551
GROVE SIZE: 20 ACRES
TREE AGE: 2.0 YEARS. ORIGINAL TREE PLANTING WAS IN JULY 1984.
TREE SPACING: 17.5×22.5 FEET
CHRONIC COLD SPOT :
NO. ABOUT 50 TREES OUT OF 2200 WERE LOST. MOSTLY DUE TO COLD. PRESENTLY MAINTAINED: YES GROVE RATING :

VERY PROMISING YOUNG GROVE

SOIL TYPE/TEXTURE :
SAND-CLAY MIXTURE CAPPED WITH OVERBURDEN. MIX WAS OBTAINED BY USUAL BREWSTER SAND-SPAY METHOD.

METHOD OF RECLAMATION :
RECLAMED BY SAND-SPRAY METHOD. BEFORE PLANTING TREES AREA WAS SEEDED WITH BAHIA AND HAIRY INDIGO, WHEN GROWTH REACHED WAIST HIGH. IT WAS BURNED OFF.
NATURAL GROWTH:
MOWING IS USED BETWEEN ROWS AND HERBICIDES USED UNDER AND BETWEEN TREES. GROVE IS NEVER DISCED.

DRAINAGE:
GOOD. WITH SHALLOW BEDDING PERHAPS 18 INCHES IN HEIGHT. SOIL WATER pH REPORTED TO BE ABOUT 7.50.

PESTS :
NO UNUSUAL OR SERIOUS PROBLEMS.
FOOTSTOCK:
ONE HALF SOUR ORANGE AND ONE HALF CARRIZO. THERE ARE FOUR COMBINATIONS OF TREES, ONE IN EACH QUADRANT OF THE GROVE. SEE SCION INFO BELOW.
SCION VARIETY:
HAMLINS ON SOUR ORANGE IN SE. PINEAPPLE ON SOUR ORANGE IN SW, PINEAPPLE ON CARRIZO IN NW AND HAMLIN ON CARRIZ O IN THE NE QUADRANT.
TREE SOURCE :
ONE HALF FROM ADAMS NURSERY AND ONE HALF FROM BILL CHESSER. IN WILDWOOD.
BLIGHT: NONE OBSERVED
COMMENTS :
IRRIGATION IS BY A LOW VOLUME MICRO JET TYPE SYSTEM. VISITED AGAIN ON 03/15/86 AND OBTAINED SOIL SAMPLES.
GROVE NAME: BP-L-SP2
LOCATION: SEC 10-TWSP 31S-RG 22E. GROVE IS WEST OF KINGSFORD PLAN-r.
DATE : 07/08/86 INSPECTOR: AHK/TPO/HMC
O W N ER: BREWSTER PHOSPHATES
CONTACT: BILL TROYER PHONE NO. : 813-634-5551
GROVE SIZE: 35 ACRES
TREE AGE: ORIGINAL PLANTINGS IN 07/84. LARGE NUMBER OF RESETS IN $06 / 85$.
TREE SPACING: SPACING IS VARIED, RANGES FROM 20×25 TO 25×25 FEET.
CHRONIC COLD SPOT:
NO. HOWEVER 25-30\% OF ORIGINAL TREES LOST TO FREEZES. SEE COMMENTS
PRESENTLY MAINTAINED: YES
GROVE RATING:
TREES VARY IN QUALITY. BUT OVERALL THIS GROVE WOULD NOT BE RATED
AS HIGH AS BREWSTER'S BP-L-I GROVE.
SOIL TYPE/TEXTURE:
OVERBURDEN CAP ON TOP OF MINED OUT AREA WITH SAND/CLAY BACKFILL.
METHOD OF RECLAMATION:
PUMPED SEPARATE LAYERS OF SAND \& CLAY. NOT-MIXED AS WELL AS
BP-L-1. RECLAIMED AREAS NEXT TO GROVES ARE ALSO SAND FILLED AND
GROVE HAS SUFFERED SOME DAMAGE IN PAST FROM "SAND BLASTING".
NATURAL GROWTH:
WEEDS AND SOME WILD GRASSES.
DRAINAGE:
DRAINAGE IS ADEQUATE. NO BEDS WERE MADE. UNLIKE SITUATION IN
BP-L-1.
PESTS :
NO UNUSUAL OR SERIOUS PROBLEMS.
ROOTSTOCK:
SOUR ORANGE
SCION VARIETY:
HAMLIN
TREE SOURCE :
ONE THIRD ARE FROM ADAMS NURSERY AND TWO THIRDS ARE FROM BILL CHESSER IN WILDWOOD.
BLIGHT: NONE OBSERVED
COMMENTS :
IRRIGATION HAS BEEN REQUESTED. THIS MINED AREA WAS WITHIN AN EXISTING GROVE. OF WHICH THE NORTH PART WASN'T MINED. IN APPROVED RECLAMATION PLAN. DNR REQUIRED NEW GROVE TO TIE IN WITH REMNANTS OF OLD GROVE. MOST OF REMNANTS HAVE BEEN LOST TO FREEZES. VISITED AGAIN ON 09/15/86 AND OBTAINED SOIL SAMPLES.

GROVE NAME: HILDA COOPER
LOCATION: SOUTH SIDE OF HIGHWAY 60 ABOUT ONE MILE WEST OF SR 39.
DATE : 07/09/86 INSPECTOR: AHK/HMC
OWNER: HILDA COOPER
CONTACT : HILDA COOPER PHONE NO.: 813-737-1742
GROVE SIZE: 9.0 ACRES
TREE AGE: 25 YEARS OLD
TREE SPACING: 15×25 FT IS AN ESTIMATE. TREES CLOSER THAN IN OWNERS OTHER GROVES CHRONIC COLD SPOT:

NO. DOES NOT APPEAR TO BE SO.
PRESENTLY MAINTAINED: YES
GROVE RATING:
GOOD

SOIL TYPE/TEXTURE:

CLAYEY SAND

METHOD OF RECLAMATION:
OWNER DOES NOT KNOW. LAND IS MUCH HIGHER THAN SURROUNDING AREA AND SLOPES TO THE WEST AND THE SOUTH.

NATURAL GROWTH:
GRASSES IN THE ROWS. APPEARS THAT HERBICIDES ARE USED UNDER AND between the trees as these areas are free of all growth.

DRAINAGE:
DITCHING IS NECESSARY TO MAINTAIN ADEQUATE DRAINAGE.

PESTS :
NO WORSE THAN OTHER GROVES OF OWNER.
ROOTSTOCK:
SOUR ORANGE

SCION VARIETY:
HAMLIN

TREE SOURCE :
GROWN BY OWNER

Ei_IGHT: NO
COMMENTS :
OWNER DOES NOT WISH TO PARTICIPATE IN STUDY. IRRIGATION IS BY A
LOW VOLUME MICRO JET TYPE SYSTEM. LOCATED IN SEC. 30 - TWSP 295

- RGE 22E.

```
GROVE NAME: IMC #1
LOCATION: WEST SIDE CLAY SETTLING AREA K-6 SEC 11-TWSP 31S-RG 22E
DATE: 06/16/86 INSPECTOR: JRM/AHK
OWNER: INTERNATIONAL MINERALS & CHEM.
CONTACT : RICHARD LEWIS-IMC DEVELOPMENT PHONE NO.: 613-534-1761
GROVE SIZE: 35 ACRES
TREE AGE: 4.0 YEARS
TREE SPACING: 25 FEET
CHRONIC COLD SPOT:
    YES
PRESENTLY MAINTAINED: YES
GROVE RATING:
    VERY GOOD. GROVE APPEARED VERY HARDY.
SOIL TYPE/TEXTURE:
    POROUS : SAND TAILINGS WITH FIN OVERBURDEN CAP
METHOD OF RECLAMATION:
    SAND TAILINGS FILL AND THEN CAP WITH OVERBURDEN FROM THE SPOILS
    PILES.
NATURAL GROWTH:
    GOOD BAHIA GROWTH
DRAINAGE :
    GOOD - SLOPES TO WEST
PESTS:
    APHIDS - BUT NO-WING SERIOUS
ROOTSTOCK
SCION VARIETY:
TREE SOURCE:
BLIGHT: NO
COMMENTS :
MICROJET IRRIGATION SYSTEM. VISITED AGAIN ON 09/16/86 FIND OBTAINED SOIL SAMPLES.
```

```
GROVE NAME: IMC #2- THE OLD VIRGINIA-CAROLINA GROVE
LOCATION: SOUTH SIDE OF CLEAR SPRINGS ENTRANCE ROAD, OFF HWY 17 SO..BARTOW
DATE : 06/16/86 INSPECTOR: JRM/AHK
OWNER: INTERNATIONAL MINERALS & CHEM.
CONTACT : RICHARD LEWIS--IMC DEVELOPMENT PHONE NO.: 813-534-1761
GROVE SIZE: 40 ACRES
TREE AGE: 27.0 YEARS
TREE SPACING: 18 FEET
CHRONIC COLD SPOT:
    NO
PRESENTLY MAINTAINED: YES. BUT ONLY FOR THE LAST 3 YEARS.
GROVE RATING:
    FAIR
    TYPE/TEXTURE:
    FILL WAS OVERBURDEN. CLAY FIND SOME LEACH ZONE MATERIAL.
METHOD OF RECLAMATION:
    AREA WAS BACKFILLED USING SPOILS PILES.
NATURAL GROWTH:
DRAINAGE :
SOME AREAS ARE STANDING IN WATER WHICH HAS CONTRIBUTED TO THE DEATH OF SOME TREES.
PESTS :
SNOW SCALE ON MANY OF THE TREES.
ROOTSTOCK:
CLEOPATRA MANDARIN
SCION VARIETY:
VALENCIA
TREE SOURCE:
UNKKNOWN
BLIGHT': NO
COMMENTS :
LOCATED IN SEC. 16-TWSP. 30 - RGE 25E. VISITED AGAIN ON 09/16/86 AND COLLECTED SOIL SAMPLES.
```

```
GROVE NAME: FG-3
LOCATION: SEC 28.29-TWSP 32S-RG 23E
DATE : 07/08/86 INSPECTOR: AHK/TPO/HMC
OWNER: AGRICO
CONTACT: RANDY MATHEWS OR DALE CARSON PHONE NO.: 813-428-1431
GROVE SIZE: 40 ACRES RECLAIMED, 32 A. ARE GROVE & 8 A. ARE HARDWOOD NURSERY.
TREE AGE: FOUR YEARS OLD.
TREE SPACING: 25x25 FEET
CHRONIC COLD SPOT:
    NO
PRESENTLY MAINTAINED: YES. BY ABBOTT GROVE SERVICE. BOWLING GREEN.
GROVE RATING:
    PROMISING GROVE. BOTH N. & S. HALVES HAVE BEEN HARVESTED IN EACH
    OF THE LAST TWO YEARS.
SOIL TYPE/TEXTURE:
    SAND TAILINGS WITH AN OVERBURDEN CAP OF ABOUT 12 INCHES.
METHOD OF RECLAMATION :
    SAND TAILINGS WITH RN OVERBURDEN CAP
NATURAL GROWTH:
    RECLAIMED ORIGINALLY AS PASTURE COVERED WITH BAHAI THEN DECIDED
    TO PLANT GROVE. NOW THERE IS ALMOST NO GROWTH IN THE GROVE.
    TOTAL WEED CONTROL.
DRAINAGE:
    DRAIN GENERALLY TO WEST. LOW SPOT IN THE NW QUADRANT WHICH IS NO
    LONGER CITRUS. DRAINAGE NOT AS GOOD AS FG-10 BECAUSE LACK OF
    BEDS. SWALES & POOR SLOPE.
PESTS:
    NO UNUSUAL OR SERIOUS PROBLEMS. SOME ROOT ROT AND FOOT ROT DUE
    TO POOR DRAINAGE.
ROOTSTOCK :
    CLEOPATRA OR MILAM. RESETS ARE SOUR ORANGE
SCION VARIETY:
    HAMLIN-MIX. SEVERAL DIFFERENT - ORIGINALLY: HAMLIN ON CLEO:
    VALENCIA ON MILAM: HAMLIN ON SWEET LIME: PINEAPPLE ON MILAM:
    HAMLIN ON MILAM.
TREE SOURCE :
    SEVERAL : BILL LAMBERT, ADAMS NURSERY. RESETS ARE FROM LAMBERT AND
    FARCUS
FLIGHT: NO
COMMENTS :
    IRRIGATION BY OVERHEAD RAINBIRDS.
```

GROVE NAME: FG-10
LOCATION: SEC 29-TWSP 32S-RG 23E
DATE : 07/08/86 INSPECTOR: AHK/TPO/HMC
OWNER: AGRICO
CONTACT: RANDY MATHEWS OR DALE CARSON PHONE NO.: 813-428-1431
GROVE SIZE: 80 ACRES
TREE AGE: 60 G. SET IN 09/82,SW 20 G. SET 05/83. THESE LOST \& RESET $4 / 86$ TREE SPACING: 20×25 FEET
CHRONIC COLD SPOT:
NO. BUT THERE HAS BEEN TREE LOSS IN THE PAST DUE TO FREEZES.
PRESENTLY MAINTAINED: YES, BY ABBOTT GROVE SERVICE, BOWLING GREEN GROVE RATING:

FAIR TO GOOD

SOIL TYPE/TEXTURE: SAND TAILINGS WITH OVERBURDEN CAP. SLOPED SLIGHTLY

METHOD OF RECLAMATION : SAND TAILINGS CAP WITH ABOUT 8" OF OVERBURDEN AND SLOPED SLIGHTLY ALFALFA USED GS COVER FOR 1 YEAR BEFORE GROVE PLANTED. (BAHIA WAS THOUGHT UNDESIREABLE)
NATURAL GROWTH: PROPERTY IS VERY BARE. HERBICIDE AND DISC PROGRAM IS USED. DRY. WINDY SEASON MAY CAUSE PROBLEMS BECAUSE TRACT IS SO BARE.

DRAINAGE:
GOOD DRAINAGE DUE TO BEDS AND SWALES. ALSO PROPERTY SLOPES SLIGHTLY IN ALL DIRECTIONS.

PESTS :
NO SERIOUS OR UNUSUAL PROBLEMS

ROOTSTOCK:
ORIGINAL PLANTINGS WERE ON CARRIZO PRIMARILY. AND 20 A. HAMLIN ON VOLKAMARINA. ENTIRE 20 ACRES LOST TO FREEZE. RESETS ARE ALL HAMLINS ON SOUR ORANGE.
SCION VARIETY:
ORIGINAL PLANTINGS WERE RED MARSH G.F.. NAVELS AND HAMLINS ALL ON CARRIZO. AND THE 20 G. HAMLINS ON VOLKAMARIANA. BUT THIS 20 A. LOST TO FREEZE.
TREE SOURCE :
ADAMS MAINLY: FARCUS IN VALRICO PROVIDED THE HAMLIN ON SOUR ORANGE RESETS.
BLIGHT: NO
COMMENTS :
LOCATED OFF AGRICO ENTRANCE ROAD. IRRIGATION BY SENNINGER HEADS. BUT ONLY ENOUGH CAPACITY TO IRRIGATE 10 ACRES AT A TIME. VISITED AGAIN ON 03/15/86 AND OBTAINED SOIL SAMPLES.

```
GROVE NAME: IMC #3
LOCATION: NORTH OF 31 MINE RD. AND SOUTH OF THE AIRPORT
DATE: 06/16/86 INSPECTOR: JRM/AHK
OWNER: INTERNATIONAL MINERALS & CHEM.
CONTACT: RICHARD LEWIS-IMC DEVELOPMENT PHONE NO.: 813-534-1761
GROVE SIZE: TREES GRE SCATTERED OVER THE RECLAIMED GREG
TREE AGE: 27.0 YEARS
TREE SPACING: VARYING
CHRONIC COLD SPOT:
    YES
PRESENTLY MAINTAINED: NO. GROVE HAS BEEN ABANDONED SINCE THE EARLY 1960' S.
GROVE RATING:
    POOR. TREMENDOUS DECLINE IN THE GROVE SINCE THE RADIONUCLIDE
    SAMPLING DUE TO THE COLD WINTERS.
SOIL TYPE/TEXTURE:
    OVERBURDEN ONLY WITH NO TAILINGS.
METHOD OF RECLAMATION :
        BACKFILL WITH OVERBURDEN
NATURAL GROWTH:
    PASTURELAND AND GRASSES
DRAINAGE:
    POOR, HOWEVER THERE IS A MILD ROLL IN THE GREG.
PESTS :
        NONE WERE SEEN
ROOTSTOCK:
        UNKNOWN (NO RECORDS AVAILABLE).
SCION VARIETY:
    VALENCIA. AS A QUESS (NO RECORDS AVAILABLE).
TREE SOURCE:
    UNKNOWN
BLIGHT: NO
COMMENTS :
    LOCATED IN SEC. 27 - TWSP 29S - RGE 25E. VISITED AGAIN ON
    (09/16/86 AND OBTAINED SOIL SAMPLES.
```

```
GROVE NAME: IMC #4 (WEST OF #3)
LOCATION: EAST OF HIGHWAY 17 TAILING PILE, NORTH OF BARTOW
DATE: 06/16/86 INSPECTOR: JRM/AHK
OWNER: INTERNATIONAL MINERALS & CHEM.
CONTACT: RICHARD LEWIS-IMC DEVELOPMENT PHONE NO.: 813-534-1761
GROVE SIZE: SCATTERED
TREE AGE: ABOUT 27 YEARS
TREE SPACING: VARYING
CHRONIC COLD SPOT:
    YES
PRESENTLY MAINTAINED: NO
GROVE RATING:
    POOR. GROVE HRS BEEN ABANDONED SINCE THE EARLY 1960's. TREMENDOUS
    DECLINE SINCE THE RADIONUCLIDE SAMPLING DUE TO THE COLD WINTERS.
SOIL TYPE/TEXTURE:
    SAND TAILINGS
METHOD OF RECLAMATION:
    SAND TAILINGS BACKFILL
```


NATURAL GROWTH:

DRAINAGE:

GOOD

```
PESTS :
```

ROOTSTOCK :
UNKNOWN
SCION VARIETY:
VALENCIA, AS A QUESS
TREE SOURCE:
UNKNOWN
BLIGHT:
COMMENTS :
LOCATED IN SEC. 28 - TWSP 296 - RGE 25E. VISITED AGAIN ON
09/16/86 AND SOIL SAMPLES.

```
GROVE NAME: HILL BLOCK
LOCATION: SEC 28-TWSP 29S-RG 22E/S OF HWY 60, ABOUT 500 FT. E OF WEIGH STAT
DATE : 07/09/86
INSPECTOR: AHK/HMC
OWNER: NORANDA-HOPEWELL LAND COMPANY
CONTACT : ALBERT MILES PHONE NO.: 813-752-4133
GROVE SIZE: 20 ACRES
TREE AGE: 30 TO 40 YEARS
TREE SPACING: 30x30 FEET
CHRONIC COLD SPOT:
    NO. BUT SOME TREE LOST DUE TO FREEZES
PRESENTLY MAINTAINED: YES. MAINTENANCE BY MILES GROVE SERVICE, PLANT CITY
GROVE RATING:
    BEST SEEDLING GROVE LEASOR HAS. VERY HEALTHY TREES WITH A HEAVY
    CROP OF FRUIT. YEILD AVERAGES 12-15 BOXES PER TREE IN GOOD YEAR.
SOIL TYPE/TEXTURE:
    CLAYEY SAND
METHOD OF RECLAMATION :
OVERBURDEN AND DEBRIS BACKFILL INTO A MINED OUT AREA. THIS BLOCK IS HIGHER THAN SURROUNDING, NATURAL LAND ELEVATION.
NATURAL GROWTH:
SOME GRASSES BUT THEY ARE VERY SPARSE DUE TO A DISC AND HERBICIDE PROGRAM.
DRAINAGE:
OK, HOWEVER THERE IS ABOUT A 2 ACRE AREA IN THIS BLOCK WITH NO TREES BECAUSE IT IS TOO WET. AREA IS TOO LOW WITH GUMBO CLAY.
PESTS:
SOME FOOT ROT
ROOTSTOCK :
SEEDLING TREES
SCION VARIETY:
TREE SOURCE :
HOME GROWN PROBABLY
E I GHT:NONE
COMMENTS :
NORTH OF HOPEWELL ROAD. SMALL GROVE SEMI-CIRCLE IN SHAPE. SOUTH OF POND. THERE IS NO IRRIGATION. TREES ARE 35-40 FT IN HEIGHT. VISITED AGAIN ON 09/17/86 AND OBTAINED SOIL SAMPLES.
```

```
GROVE NAME: ISLAND BLOCK
LOCATION: NEXT TO HOPEWELL HILL BLOCK. BUT NORTH SIDE OF POND
DATE : 07/09/86 INSPECTOR: AHK/HMC
OWNER: NORANDA-HOPEWELL LAND COMPANY
CONTACT: ALBERT MILES-MILES GROVE SERV. PHONE NO.: 813-752-4133
GROVE SIZE: 5 ACRES
TREE AGE: 30 TO 35 YEARS. THIS BLOCK SLIGHTLY YOUNGER THAN THE HILL BLOCK.
TREE SPACING: 25x25 FEET
CHRONIC COLD SPOT:
    NO, BUT MORE TREES LOST TO COLD IN THIS BLOCK THAN IN HILL BLOCK.
PRESENTLY MAINTAINED: YES, MILES GROVE SERVICE, PLANT CITY
GROVE RATING:
    SAME AS THE HILL BLOCK. THE BEST SEEDLING GROVE THE LEASOR HAS.
    YIELD IS ABOUT 12 TO 13 BOXES PER TREE IN A GOOD YEAR.
SOIL TYPE/TEXTURE:
    OVERBURDEN AND DEBRIS
METHOD OF RECLAMATION :
    TWO AREAS IN THIS BLOCK. ONE IS A, MINED OUT AREA BACKFILLED USING
    OVERBURDEN FIND DEBRIS. THE OTHER IS AN UNMINED AREA BACKFILLED
    WITH OVERBURDEN AND DEBRIS.
NATURAL GROWTH:
    SOME GRASSES BUT THEY ARE VERY SPARSE DUE TO A DISC AND HERBICIDE
    PROGRAM.
DRAINAGE:
    GOOD
PESTS :
    SOME FOOT ROOT
ROOTSTOCK:
    THIS IS A SEEDLING GROVE. HOWEVER THERE ARE A FEW HAMLINS ON SOUR
    ORANGE FROM RESETS.
SCION VARIETY:
TREE SOURCE:
    PROBABLY HOME GROWN
BLIGHT: NO
COMMENTS :
THERE IS NO IRRIGATION. LOCATED IN SEC. 28 - TWSP 29 S - RGE 22 E .
```

```
GROVE NAME: CONLEY BARNETT
LOCATION : NORTH SIDE OF HWY 98 EAST, ABOUT 3 MILES OUTSIDE FT. MEADE.
DATE : 07/08/86 INSPECTOR: AHK/TPO/HMC
OWNER: CONLEY BARNETT
CONTACT : CONLEY BARNETT PHONE NO.:
GROVE SIZE: 20 ACRES
TREE AGE: 2 YEARS AS A GUESS. TRUNKS ARE LARGE FOR TOPS SO COULD BE OLDER.
TREE SPACING: NOT SURE
CHRONIC COLD SPOT:
    NO, BUT THERE IS EVIDENCE OF COLD FROM SOME BARK SPLIT
PRESENTLY MAINTAINED: YES
GROVE RATING:
    FAIR
```

SOIL TYPE/TEXTURE:
METHOD OF RECLAMATION :
NATURAL GROWTH:
APPEARS TO BE NO WEED CONTROL PROGRAM. WEEDS ARE BAD ESPECIALLY
ON THE EAST END.
DRAINAGE :
PESTS :
ROOTSTOCK :
SCION VARIETY:
TREE SOURCE :
BLIGHT:
COMMENTS :
OWNER DOES NOT WISH TO PARTICIPATE IN THE STUDY. LOCATED IN S.E.
CORNER OF SEC 25-TWSP 31-RG 25 AND CORNER OF SEC 30-TWSP 31-RG 26
IRRIGATION IS LOW VOLUME MICRO JET TYPE.

```
GROVE NAME: ALVY WINDHAM
LOCATION: 3340 HWY 98 EAST FORT MEADE
DATE : 07/08/86 INSPECTOR: AHK/TPO/HMC
OWNER: ALVY WINDHAM
CONTACT : ALVY WINDHAM PHONE NO.: 813-285-3534
GROVE SIZE: APPROXIMATELY 2 ACRES.
TREE AGE: UNKNOWN. SOME TREES APPEAR TO BE ABOUT 2-3 YEARS OLD BASED ON SIZE
TREE SPACING:
CHRONIC COLD SPOT:
    YES. APPEARS TO BE ESPECIALLY ON THE LOW END OF WESTWARD SLOPE.
PRESENTLY MAINTAINED:
GROVE RATING:
    VERY IRREGULAR TREE GROWTH
```

SOIL TYPE/TEXTURE:
PROBABLY SAND TAILINGS WITH OVERBURDEN CAP.
METHOD OF RECLAMATION:
NATURAL GROWTH:
GROVE WAS DISCED RECENTLY. BUT THERE IS NO WEED CONTROL AROUND OR
UNDER THE TREES.
DRAINAGE:
PROPERTY SLOPES DOWN TO THE WEST
PESTS :
ROOTSTOCK :

SCION VARIETY:

TREE SOURCE :

BLIGHT:

COMMENTS :
WE HAVE BEEN UNABLE TO CONTACT THE OWNER. SO ALL OUR INFORMATION HAS COME FROM A RIDE-BY VISIT UF THE GROVE. NO IRRIGATION WAS VISIBLE. LOCATED IN SEC. 13 - TWSP 31S - RGE $26 E$.

```
GROVE NAME: WA PIPKIN SOUTH
LOCATION: SO. SIDE OF FITZGERALD RD. OFF LAKE SCOTT SEC 7- TWSP 29S-RG 24E
DATE : 07/08/86 INSPECTOR: AHK/TPO/HMC
OWNER: WA PIPKIN ESTATE
CONTACT : WA PIPKIN ESTATE PHONE NO.: UNKNOWN
GROVE SIZE: 40 ACRES
TREE AGE: 25 YEARS AS A QUESS. A FEW REPLANTS BUT MOST TREES SAME SIZE & AGE
TREE SPACING: 20x30 FEET
CHRONIC COLD SPOT:
    NO. BUT A TRACE OF COLD DAMAGE SEEN FROM CUT BACK TREES
PRESENTLY MAINTAINED: YES
GROVE RATING:
    AVERAGE OR SLIGHTLY ABOVE AVERAGE GROVE FOR THIS TYPE TREES.
    MODERATELY VIGOROUS BUT RELATIVELY UNIFORM GROVE. TREES JUST LOOK
    A LITTLE "HARD".
SOIL TYPE/TEXTURE:
    SANDY CLAY
METHOD OF RECLAMATION: PROBABLY A HYDRAULICALLY MINED AREA WITH OVERBURDEN BACKFILL.
NATURAL GROWTH:
BERMUDA GRASS BETWEEN ROWS WHICH HAS BEEN MOWED. PROBABLY A HERBICIDE PROGRAM IS USED UNDER AND AROUND THE TREES AS THERE WAS NO GROWTH HERE.
DRAINAGE:
NO STANDING WATER WAS SEEN DURING VISIT
PESTS :
TRACE OF LIGHT SNOW SCALE, SOME APHIDS AND A TRACE OF FOOT ROT. BUT NO SERIOUS OR UNUSUAL PROBLEMS
ROOTSTOCK :
PROBABLY SOUR ORANGE
SCION VARIETY:
VALENCIA
TREE SOURCE:
UNKNOWN
BLIGHT: NO
COMMENTS :
WE HAVE BEEN UNABLE TO CONTACT OWNER. INFORMATION WAS GATHERED BY A RIDE-BY VISIT. IRRIGATION IS BY A LOW VOLUME MICRO JET TYPE SYSTEM. NORTH AND WEST OF THIS GROVE IS A CEMETARY. TO THE EAST IS RESIDENTIAL AND TO THE SOUTH IS A MINED OUT AREA.
```

```
GROVE NAME: WA PIPKIN NORTH
LOCATION: NO.SIDE OF FITZGERALD RD, OFF SCOTT LK RD/SEC 12- TWSP 29S-RG 23E
DATE : 07/08/86 INSPECTOR : AHK/TPO/HMC
OWNER: WA PIPKIN ESTATE
CONTACT : UNKNOWN PHONE NO.:
GROVE SIZE: 20 ACRES
TREE AGE: UNKNOWN HUT TREES ARE SMALLER THAN TREES IN PIPKIN SOUTH GROVE
TREE SPACING: 20x30 FEET
CHRONIC COLD SPOT:
    NO, BUT TREES SHOW SIGNS OF BEING CUT BACK MORE SO THAN PIPKIN SO.
PRESENTLY MAINTAINED: YES
GROVE RATING:
    ABOUT THE SAME AS PIPKIN SOUTH BUT THE TREES ARE A LITTLE SMALLER
SOIL TYPE/TEXTURE:
    SAME AS PIPKIN SOUTH
METHOD OF RECLAMATION :
    PROBABLY A HYDRAULICALLY MINED AREA WITH OVERBURDEN BACKFILL.
NATURAL GROWTH:
    BERMUDA GRASS BETWEEN TREE ROWS WHICH HAS BEEN MOWED AND PROBABLY
    AN HERBICIDE IS USED UNDER AND AROUND THE TREES AS THERE IS NO
    GROWTH IN THIS AREA.
DRAINAGE:
    NO STANDING WATER WAS SEEN, THERE IS A SLOPE TO THE EAST BACK
    TOWARD LAKE SCOTT.
PESTS :
    INDICATION OF ZINC DEFICIENCY WAS SEEN ON SEVERAL TREES.
ROOTSTOCK:
```

SCION VARIETY:
TREE SOURCE:
UNKNOWN
BLIGHT:
COMMENTS :

WE HAVE BEEN UNABLE TO LOCATE THE OWNER SO ALL INFORMATION IS FROM A RIDE-BY VISIT. IRRIGATION IS A LOW VOLUME MICRO JET TYPE SYSTEM.

```
GROVE NAME: SHADY GROVES NURSERY #1
LOCATION: OFF SWILLEY ROAD, BETWEEN SR 39 AND KEYSVILLE RD. SO. OF HWY 60
DATE: 07/03/86 INSPECTOR: AHK/HMC
OWNER: MAYNARD LEETUN
CONTACT : MAYNARD LEETUN
PHONE NO.: 813-647-1451
GROVE SIZE: 2.5 ACRES
TREE AGE: ABOUT 8 YEARS
TREE SPACING: 15x25 FEET
CHRONIC COLD SPOT:
    NO, FINGER LAKES AROUND GROVES PROVIDE EXCELLENT COLD PROTECTION
PRESENTLY MAINTAINED: YES, BY OWNER
GROVE RATING:
    EXCELLENT GRAPEFRUIT GROVE
SOIL TYPE/TEXTURE:
    OVERBURDEN AND SOME LEACH MATERIAL
METHOD OF RECLAMATION :
    RECLAIMED BY OWNER BY LEVELING OVERBURDEN SPOIL PILES.
NATURAL GROWTH:
    HERBICIDE IS USED UNDER AND BETWEEN THE TREES AND MOWING IS USED
    BETWEEN ROWS.
DRAINAGE:
    EXCELLENT
```

```
PESTS :
```

PESTS :
NO UNUSUAL OR SERIOUS PROBLEMS. A TRACE OF IRON DEFICIENCY WAS
NO UNUSUAL OR SERIOUS PROBLEMS. A TRACE OF IRON DEFICIENCY WAS
SEEN IN SOME TREES.
SEEN IN SOME TREES.
ROOTSTOCK:
ROOTSTOCK:
CLEOPATRA
CLEOPATRA
SCION VARIETY:
PINK MARSH GRAPEFRUIT
TREE SOURCE :
BLIGHT : NO
COMMENTS :
IRRIGATION IS LOW VOLUME MICRO JET TYPE. AREA WAS MINED IN THE 1910'S ACCORDING TO THE OWNER. LOCATED IN SEC. 7 - TWSP 30 RGE 22E. VISITED AGAIN ON 09/22/86 AND OBTAINED SOIL SAMPLES.

```
```

GROVE NAME: SHADY GROVES NURSERY \#2
LOCATION: NEXT TO SHADY GROVES NURSERY \#1
DATE : 07/03/86
INSPECTOR: AHK/HMC
OWNER: MAYNARD LEETUN
CONTACT: MAYNARD LEETUN
GROVE SIZE: THREE FORTHS OF AN ACRE
TREE AGE: }5\mathrm{ TO 8 YEARS OLD AS A GUESS
TREE SPACING: 15x20 FEET
CHRONIC COLD SPOT:
NO, FINGER LAKES PROVIDE COLD PROTECTION
PRESENTLY MAINTAINED: YES, BY OWNER
GROVE RATING:
EXCELLENT GROVE. SQUATTY TREES LOADED WITH FRUIT.
SOIL TYPE/TEXTURE:
SAME AS SHADY GROVES NURSERY \#1
METHOD OF RECLAMATION :
SAME AS SHADY GROVES NURSERY \#1
NATURAL GROWTH :
SAME AS SHADY GROVES NURSERY \#1
DRAINAGE:
GOOD. NO STANDING WATER
PESTS :
ROOTSTOCK :
CARRIZO)
SCION VARIETY:
NAVELS
TREE SOURCE:
BLIGHT:NO
COMMENTS:
IRRIGATION IS A LOW VOLUME MICRO JET TYPE SYSTEM. LOCATED IN
SEC. 7 - TWSP 30S - RGE 22E.

```
```

GROVE NAME: SHADY GROVES NURSERY \#3
LOCATION: NEXT TO SHADY GROVES NURSERY \#2
DATE: 07/03/86 INSPECTOR: AHK/HMC
OWNER: MAYNARD LEETUN
CONTACT : MAYNARD LEETUN PHONE NO.: 813-647-1451
GROVE SIZE: GROVE IS 45 ACRES TOTAL BUT ONLY ONE HALF IS ON RECLAIMED LAND
TREE AGE: ABOUT 8 YEARS.
TREE SPACING:
CHRONIC COLD SPOT:
NO, FINGER LAKES PROVIDE COLD PROTECTION
PRESENTLY MAINTAINED: YES, BY THE OWNER
GROVE RATING:
EXCELLENT GROVE, YIELD WAS 800 BOXES PER ACRE IN 1365.
SOIL TYPE/TEXTURE:
SAME AS SHADY GROVES NURSERY \#1 AND \#2
METHOD OF RECLAMATION:
SAME AS SHADY GROVES NURSERY \#1 AND \#2
NATURAL GROWTH:
SAME AS SHADY GROVES NURSERY \#1 AND \#3
DRAINAGE:
GOOD
PESTS :
ROOTSTOCK:
CLEOPATRA
SCION VARIETY:
HAMLIN
TREE SOURCE:
BLIGHT: NO
COMMENTS :
IRRIGATION IS BY LOW VOLUME MICRO JET TYPE SYSTEM. LOCATED IN SEC. 6. 7 - TWSP 30S - RGE 22E. VISITED AGAIN ON 09/22/86 AND OBTAINED SOIL SAMPLES.

```
```

GROVE NAME : PIT GROVE
LOCATION: SO. OF PLANT CITY-ON KEYSVILLE RD. WEST OF SR 39 AT 1st RR TRACKS
DATE : 07/09/86
INSPECTOR: AHK/HMC
OWNER: DON E. HEMPHILL
CONTACT: DON E. HEMPHILL PHONE NO..: 813-752-3568
GROVE SIZE: AREA IS 56 ACRES BUT ONLY 52 A. ARE PLANTED, THERE IS 3 A. POND.
TREE AGE:24 YEARS
TREE SPACING: SPACING VARIES FROM 23 TO 27 FEET BUT 25x25 FEET IS AVERAGE
CHRONIC COLD SPOT:
NO
PRESENTLY MAINTAINED: YES, EXTREMELY WELL
GROVE RATING:
EXCELLENT, THICK CRISP FOLIAGE. PROBABLY BEST GROVE WE VISITED
SOIL TYPE/TEXTURE:
SANDY WITH SOME CLAY, EAST OF THE POND THE SOIL IS MORE COARSE
THAN IN OTHER AREAS OF THE GROVE.
METHOD OF RECLAMATION :
LEVELING OF SPOIL PILES AROUND M.O.A.
NATURAL GROWTH:
TREE TO TREE WEED CONTROL PROGRAM. THERE WAS VERY LITTLE GROWTH FIT FILL.
DRAINAGE:
Generally Good, the grove slopes to the south and there are some WET AREAS BUT NOTHING SERIOUS.
PESTS:
NO PROBLEM AS LONG AS SPRAY PROGRAM IS MAINTAINED
ROOTSTOCK:
MOSTLY SOUR ORANGE \& CLEOPATRA
SCION VARIETY:
MOSTLY HAMLINS, SOME PINEAPPLES
TREE SOURCE:
VARIOUS NURSERYS
BLIGHT: NO
COMMENTS :
IRRIGATION IS BY OVERHEAD RAINBIRDS SUPPLIED FROM A 3 ACRE POND IN MIDDLE OF GROVE. MOST RESETS ARE DOUBLE SET. LOCATED IN SEC. 7 - TWSP $30 S$ - RGE 22E. VISITED AGAIN ON 09/17/86 AND OBTAINED SOIL SAMPLES.

```
```

GROVE NAME: DANA GROVE
LOCATION: NO. SIDE KEYSVILLE RD WEST OF SR 39, 3/4 MILE WEST HEMPHILL GROVE
DATE: 07/03/86 INSPECTOR:AHK/HMC
OWNER: UNKNOWN
CONTACT: D. HEMPHILL, M. LEETUN
GROVE SIZE: 70 ACRES AS A GUESS
TREE AGE: UNKNOWN
TREE SPACING: 20x25 FEET AS A GUESS
CHRONIC COLD SPOT:
NOT SURE, TREES LOOK AS THOUGH THEY MAY HAVE BEEN CUT BACK
PRESENTLY MAINTAINED: YES
GROVE RATING :
FAIR
SOIL TYPE/TEXTURE:
METHOD OF RECLAMATION:
UNKNOWN, HOWEVER IT APPEARED RS THOUGH THE NORTH SIDE OF THE
PROPERTY MIGHT BE IN THE PROCESS OF BEING FILLED IN AT THIS TIME.
NATURAL GROWTH :
APPEARED THAT ROWS HAVE BEEN MOWED AND HERBICIDE USED UNDER AND
AROUND TREES.
DRAINAGE:
APPEARED TO BE OK. PROPERTY SLOPES TO THE SOUTH
PESTS :
ROOTSTOCK :
LOOKED LIKE A TRIFOLIATE ORANGE OR CARRIZO
SCION VARIETY:
HAMLINS OR VALENCIA
TREE SOURCE:
UNKNOWN
BLIGHT:
COMMENTS :
WE HAVE BEEN UNABLE TO LOCATE THE OWNER SO ALL INFORMATION WAS
GATHERED BY A RIDE-BY VISIT. LOCATED IN SEC. 7, 12 - TWSP 30S -
RGE 22E.

```

GROVE NAME：RICHARD CLARK
LOCATION：E．SIDE OF HWY 555，OFF HWY 60 WEST，BARTOW，BEHIND CHEVY DEALER
DATE ：07／09／86
INSPECTOR：AHK／HMC
OWNER：RICHARD CLARK
CONTACT：RICHARD CLARK PHONE ND．：Bi こーEここーこらЭ1
GROVE SIZE： 60 ACRES
TREE AGE： 5.5 YEARS
TREE SPACING： \(12.5 \times 25\) FEET
CHRONIC COLD SPOT：
NO
PRESENTLY MAINTAINED：YES
GROVE RATING：
EXCELLENT，ONE OF THE BEST VISITED，TREES WERE OF A UNIFORM SIZE WITH A VERY HEAVY CROP OF FRUIT

SOIL TYPE／TEXTURE：
SAND TAILINGS WITH AN OVERBURDEN CAP AND ABOUT 8 INCHES OF TOP SOIL

METHOD OF RECLAMATION：
WINDROWS WERE FILLED BY PUMPING IN TAILS，OWNER COVERED THIS BY LEVELING SPOIL PILES THEN HAULED IN TOPSOIL FROM OTHER AREA FOR 8 ＂COVER．
NATURAL GROWTH：
BAHAI BETWEEN TREE ROWS MAINTAINED BY MOWING AND HERBICIDE UNDER AND AROUND TREES．

DRAINAGE：
EXCELLENT，WHEN THE PROPERTY WAS RECLAIMED THERE WAS A 6 INCH PER 100 FEET SLOPE DEVELOPED

PESTS：
FIRE ANTS

ROOTSTOCK：
CARRIZOS

SCION VARIETY：
ALL ORANGES ARE EARLYS－PARSON BROWNS \＆HAMLIN．THERE ARE ALSO 16 ROWS OF SUNBURST TANGERINES AND ORLANDO POLLENIZERS．

TREE SOURCE：
HOME GROWN BY OWNER

BLIGHT：NONE

COMMENTS：
IRRIGATION IS A LOW VOLUME MICRO JET TYPE SYSTEM．LOCATED IN SEC． 7 －TWSP \(30 S\)－RGE 25E．
```

GROVE NAME: BP-H-1, BREWSTER PHOS. HAYNESWORTH \#1, ALSO KNOWN AS CAVILIER GROVE
LOCATION: SEC 27-TWSP 31-RG 23-ON WEST SIDE OF HWY 37 S. MULBERRY
DATE: 07/08/86 INSPECTOR: AHK/TPO/HMC
OWNER: BREWSTER PHOSPHATES
CONTACT: BILL TROYER PHONE NO.: 813-654-5551
GROVE SIZE: 4 ACRE ESTIMATED, 176 TREES BY COUNT
TREE AGE: 37 YEARS
TREE SPACING: 25x25 FEET
CHRONIC COLD SPOT:
NO, BUT SOME TREE HAVE BEEN Los-r TO COLD
PRESENTLY MAINTAINED: YES, BY JAMES CROCKER, BONE VALLEY GROVES
GROVE RATING:
POOR
SOIL TYPE/TEXTURE:
HYDRAULICALLY PLACED OVERBURDEN FROM PIT JUST WEST OF GROVE.
UNSURE WHETHER FILL PLACED IN MINED OUT AREA OR ON ORIGINAL
NATURAL GOUND.
METHOD OF RECLAMATION :
HYDRAULICALLY PLACED OVERBURDEN FROM PIT JUST WEST OF GROVE.
NATURAL GROWTH:
WEED CONTROL USING HERBICIDE AND MOWING, PRESENTLY FAIRLY HEAVY
LANTANA IN GROWTH AROUND MANY TREES.
DRAINAGE :
GOOD
PESTS :
ROOTSTOCK:
PROBABLY SOUR ORANGE. BASED ON ABSENCE OF SPROUTS
SCION VARIETY:
HAMLINS
TREE SOURCE:
BLIGHT: NONE OBSERVED
COMMENTS :
NO IRRIGATION AT THIS TIME AND NO PLANS.

```
```

GROVE NAME: W. A. DOBBS
LOCATION: EAST SIDE OF HWY 37 SO., MULBERRY, ACROSS FROM BP-H-1 (CAVILIER)
DATE : 07/08/86 INSPECTOR: AHK/TPO/HMC
OWNER: W.A. DOBBS
CONTACT:MRS.W.A. DOBBS PHONE NO.: 813-683-5379
GROVE SIZE: 30 ACRES
TREE AGE: 31 YEARS
TREE SPACING: 55 TREES PER ACRE
CHRONIC COLD SPOT:
NO, NUT THERE WAS A TRACE OF COLD DAMAGE VISABLE FROM THE ROAD
PRESENTLY MAINTAINED: YES
GROVE RATING :
VERY GOOD ACCORDING TO OWNER
SOIL TYPE/TEXTURE:
CLAYEY SAND
METHOD OF RECLAMATION:
OWNER DOES NOT KNOW,, BUT POSSIBLY THIS PROPERTY WAS PART OF THE
SOME MINING OPERATION RS BREWSTER'S BP-H-1 STRAIGHT ACROSS HWY
37 \& RECLAIM SAME.
NATURAL GROWTH:
GROVE HAS BEEN DISCED RECENTLY.
DRAINAGE:
EXCELLENT DRAINAGE
PESTS :
NO PROBLEMS
ROOTSTOCK:
SOUR LEMON
SCION VARIETY:
OWNER THINKS HAMLINS, BUT NOT SURE
TREE SOURCE:
NURSERY ON HIGHLANDS RD. LAKELAND
BLIGHT:NO
COMMENTS :
OWNER DOES NOT WISH TO PARTICIPATE IN STUDY. SO OUR OBSERVATIONS
WERE MADE FROM THE ROAD. LOCATED IN SEC. 27 - TWSP 31S - RGE 23E

```
```

GROVE NAME : GAR-FM-82 (4)
LOCATION: SEC. 18 - TWSP 32S - RGE 25E. S. E. QUADRANT.
DATE: 10/14/86 INSPECTOR:
OWNER: GARDINIER
CONTACT: RICHARD HUNTER PHONE ND.: 813-533-8103
GROVE SIZE: 45 ACRES
TREE AGE:
TREE SPACING: 15x25 FEET
CHRONIC COLD SPOT:
PRESENTLY MAINTAINED: YES
GROVE RATING:
SOIL TYPE/TEXTURE:
SAND TAILINGS WITH OVERBURDEN CAP
METHOD OF RECLAMATION:
NATURAL GROWTH:
DRAINAGE:
PESTS :
ROOTSTOCK :
SOUR ORANGE
SCION VARIETY:
HAMLIN
TREE SOURCE:
HIMROD, HARDEE COUNTY
SLIGHT:
COMMENTS :
5200 TREES TO BE SET. PLANTING EITHER WINTER '86 OR SPRING '87.
MIRCO JET IRRIGATION. NEXT TO ESTABLISHED GROVE. MINED LAND WAS
ORIGINALLY IN CITRUS.

```
```

