Publication No. 02-179-246

DEVELOPMENT OF REAGENT SCHEMES FOR REDUCING MgO CONTENT IN THE FLOTATION CONCENTRATE FOR PROCESSING FLORIDA'S HIGH-DOLOMITE PHOSPHATE DEPOSITS

FINAL REPORT

Prepared by

FLORIDA INDUSTRIAL AND PHOSPHATE RESEARCH INSTITUTE

with the collaboration of

CHINA BLUESTAR LEHIGH ENGINEERING CORPORATION

and

UNIVERSITY OF UTAH

under a grant sponsored by

September 2012

The Florida Industrial and Phosphate Research Institute (FIPR Institute) was created in 2010 by the Florida Legislature (Chapter 1004.346, Florida Statutes) as part of the University of South Florida Polytechnic. The FIPR Institute superseded the Florida Institute of Phosphate Research established in 1978 but retained and expanded its mission. In April 2012 the statute was amended by the Florida Legislature, transferring the Institute to the Florida Polytechnic University as of July 1, 2012. The FIPR Institute is empowered to expend funds appropriated to the University from the Phosphate Research Trust Fund. It is also empowered to seek outside funding in order to perform research and develop methods for better and more efficient processes and practices for commercial and industrial activities, including, but not limited to, mitigating the health and environmental effects of such activities as well as developing and evaluating alternatives and technologies. Within its phosphate research program, the Institute has targeted areas of research responsibility. These are: establish methods for better and more efficient practices for phosphate mining and processing; conduct or contract for studies on the environmental and health effects of phosphate mining and reclamation; conduct or contract for studies of reclamation alternatives and wetlands reclamation; conduct or contract for studies of phosphatic clay and phosphogypsum disposal and utilization as a part of phosphate mining and processing; and provide the public with access to the results of its activities and maintain a public library related to the institute's activities.

The FIPR Institute is located in Polk County, in the heart of the Central Florida phosphate district. The Institute seeks to serve as an information center on phosphate-related topics and welcomes information requests made in person, or by mail, email, fax, or telephone.

Interim Executive Director Brian K. Birky

Research Directors

J. Patrick Zhang Steven G. Richardson Brian K. Birky -Mining & Beneficiation -Reclamation -Public & Environmental Health

Publications Editor Karen J. Stewart

Florida Industrial and Phosphate Research Institute 1855 West Main Street Bartow, Florida 33830 (863) 534-7160 Fax: (863) 534-7165 http://www.fipr.state.fl.us

DEVELOPMENT OF REAGENT SCHEMES FOR REDUCING MgO CONTENT IN THE FLOTATION CONCENTRATE FOR PROCESSING FLORIDA'S HIGH-DOLOMITE PHOSPHATE DEPOSITS

FINAL REPORT

Patrick Zhang Principal Investigator FLORIDA INDUSTRIAL AND PHOSPHATE RESEARCH INSTITUTE Bartow, Florida

with

Shibo Zheng, Wenyi Sun, Xiaoqing Ma CHINA BLUESTAR LEHIGH ENGINEERING CORPORATION Lianyungang, Jiangsu, China

and

Jan Miller UNIVERSITY OF UTAH Salt Lake City, Utah

Prepared for

FLORIDA INDUSTRIAL AND PHOSPHATE RESEARCH INSTITUTE 1855 West Main Street Bartow, Florida 33830 USA

> Project Manager: Patrick Zhang FIPR Contract Number: 08-02-179

> > September 2012

DISCLAIMER

The contents of this report are reproduced herein as received from the contractor. The report may have been edited as to format in conformance with the FIPR Institute *Style Manual*.

The opinions, findings and conclusions expressed herein are not necessarily those of the Florida Industrial and Phosphate Research Institute or its predecessor, the Florida Institute of Phosphate Research, nor does mention of company names or products constitute endorsement by the Florida Industrial and Phosphate Research Institute.

PERSPECTIVE

The rationale behind this project is a 1989 FIPR study of the future phosphate resources in Florida. Analytical results averaged on numerous core samples show that MgO will be a problem with both the pebble and concentrate as phosphate mining moves farther south in the Bone Valley deposit. Since the ratio of concentrate to pebble will become higher and higher in the future, reducing MgO content in the concentrate by a small margin would allow blending of a large portion of the high-dolomite pebble. A rough estimate based on the above data indicated that about 90% of the high-dolomite pebbles could be used, if the MgO content in the concentrate is reduced by 30%.

The current project was designed to develop techniques to reduce MgO content in the concentrate with minor modifications or no change to the current processing flowsheet. The ideal way of doing this is to depress dolomite while floating phosphate, but the following 6 approaches were tested under this project: (1) adding a dolomite depressant in the rougher flotation step; (2) dolomite flotation on the rougher concentrate with and without grinding; (3) dolomite flotation on the cleaner concentrate with and without grinding; (4) scrubbing the flotation feed; (5) scrubbing the rougher concentrate; and (6) scrubbing the cleaner concentrate.

Successful methods include adding a dolomite depressant in the rougher flotation, dolomite flotation on the cleaner concentrate with grinding, and scrubbing the cleaner concentrate in quartz sand. These techniques could reduce MgO content in the final concentrate by 20-40%. The flotation process could achieve a concentrate with the lowest MgO content, but it is the most expensive approach. Adding a dolomite depressant is inexpensive and easy, but the effect is limited. Overall, scrubbing may be the most promising technology for this purpose.

ACKNOWLEDGEMENTS

Co-funding from CF Industries and the Mosaic Company is highly appreciated. Both of these companies also made special effort to drill and wash core samples in order to obtain the high-dolomite samples for this project. Special thanks are due to the following individuals for their strong support and technical input: Bill Stewart, Chaucer Hwang and David Gossett of CF; and Paul Kucera, Charles Guan, Glen Oswald and Bruce Bodine of Mosaic. The technical guidance provided by the FIPR Beneficiation Technical Advisory Committee is particularly acknowledged.

ABSTRACT

A 1989 FIPR characterization study of the future phosphate resources in Florida showed that MgO would be a problem with both the pebble and concentrate as phosphate mining moves deeper. Since the ratio of concentrate to pebble will become higher and higher in the future, reducing MgO content in the concentrate by a small margin would allow blending of a large portion of the high-dolomite pebble. This research was conducted based on that logic.

The following six approaches were tested for reducing MgO content in the flotation concentrate: (1) Adding a dolomite depressant in the rougher flotation step; (2) Dolomite flotation on the rougher concentrate with and without grinding; (3) Dolomite flotation on the cleaner concentrate with and without grinding; (4) Scrubbing the flotation feed; (5) Scrubbing the rougher concentrate; (6) Scrubbing the cleaner concentrate. Successful methods include adding a dolomite depressant in the rougher flotation, dolomite flotation on the cleaner concentrate with grinding, and scrubbing the cleaner concentrate in quartz sand. These techniques could reduce MgO content in the final concentrate by 20-40%. The flotation process could achieve a concentrate with the lowest MgO content, but it is the most expensive approach. Adding a dolomite is inexpensive and easy, but the effect is limited. Overall, scrubbing may be the most promising technology for this purpose.

PERSPECTIVE	iii
ACKNOWLEDGEMENTS	ix
ABSTRACT	V
EXECUTIVE SUMMARY	1
Sample Collection and Characterization	1
Laboratory Tests to Evaluate Dolomite Depressants	2
Dolomite Flotation with and without Grinding	2
Flotation without Grinding	2
Grinding of Flotation Feed Followed by Flotation	2
Grinding of Rougher Concentrate Followed by Flotation	3
Grinding of the Final Concentrate Followed by Flotation	3
Scrubbing Tests	3
Direct Scrubbing	3
Scrubbing with Hard Media	3
Determination of Iron and Aluminum Distribution	3
Screening of Phosphate Depressants	4
Preliminary Economic Analysis	4
Addition of Dolomite Depressant	4
Reverse Flotation of Amine Concentrate	4
Scrubbing in Quartz Sand Media	4
INTRODUCTION	7
Task 1. Sample Collection and Characterization	8
Task 2. Lab Tests to Evaluate Dolomite Depressants	8
Task 3. Lab Tests to Evaluate Phosphate Depressants	8
Task 4. Exploratory Flowsheet Development	9
Task 5. Scrubbing Testing	9
Task 6. Determination of Iron and Aluminum Distribution	9
Task 7. Preliminary Economic Analysis	9
SAMPLE PREPARATION AND CHARACTERIZATION	11

TABLE OF CONTENTS

TABLE OF CONTENTS (CONT.)

Sample Collection and Shipping	11
Sample Preparation	11
Chemical and Size Analyses	12
Mineralogical Analysis	14
Francolite Structures	14
Carbonate Structures	14
Quartz Structure	15
MINERAL LIBERATION ANALYSIS	17
The Lehigh Investigation	17
The University of Utah Study	25
XRD Analysis	25
High Resolution X-Ray Microtomography (HRXMT) Analysis	26
CF Feed	27
Mosaic Feed	29
Conclusions	32
SCREENING OF DOLOMITE DEPRESSANT	35
Test Equipment	35
Reagents	35
Baseline Flotation (Double Float) Tests	35
Testing of Dolomite Depressants	39
Detailed Evaluation of Promising Depressants	53
EXPLORATORY FLOWSHEET DEVELOPMENT	63
Flotation Feed Grinding Followed by Flotation	63
Rougher Concentrate Grinding Followed by Flotation	63
Concentrate Grinding Followed by Flotation	63
Reagents Addition in the Deoiling Step	70
Dolomite Flotation without Grinding	73
Dolomite Flotation with Grinding	78
Dolomite Flotation with Phosphate Depressants	83
REDUCING MgO CONTENT BY SCRUBBING	91
Direct Scrubbing of Rougher Concentrate	91
Scrubbing with Hard Media	95
Parametric Testing of Scrubbing with Media	107

TABLE OF CONTENTS (CONT.)

IRON AND ALUMINUM DISTRIBUTION	119
OVERALL CONCLUSIONS AND PRELIMINARY ECONOMIC ANALYSIS	123
Addition of Dolomite Depressant	123
Reverse Flotation of Amine Concentrate	123
Scrubbing in Quartz Sand Media	123
REFERENCES	127

LIST OF FIGURES

Figure

1.	Sample Preparation Chart
2.	As-Received CF Sample, Single Polarizing and Orthogonal Photos, 40x18
3.	Concentrate, Single Polarizing and Orthogonal Photos, 40x19
4.	Monomer (>80%) Phosphate and Dolomite Photos20
5.	Phosphate Monomer, Single Polarizing and Orthogonal Photos, 100x21
6.	Phosphate Monomer, Single Polarizing and Orthogonal Photos, 200x22
7.	Crushed Phosphate Monomer, Single Polarizing & Orthogonal Photos, 100x
8.	Crushed Dolomite Monomer, Single Polarizing & Orthogonal Photos, 100x
9.	XRD Analyses of CF and Mosaic Samples from Florida Phosphate Rock26
10.	3D Liberation Spectra of Francolite for the CF Flotation Feed Sample
11.	3D Liberation Spectra of Dolomite for the CF Flotation Feed Sample
12.	Liberation-limited Grade/Recovery Curve of Francolite for the
	CF Flotation Feed Sample $(20 \times 150 \text{ mesh})$
13.	Liberation-limited Grade/Recovery Curve of Dolomite for the
	CF Flotation Feed Sample $(20 \times 150 \text{ Mesh})$
14.	3D Liberation Spectra of Francolite for the Mosaic Flotation Feed Sample30
15.	3D Liberation Spectra of Dolomite for the Mosaic Flotation Feed Sample30
16.	Liberation-limited Grade/Recovery Curve of Francolite for the
	Mosaic Flotation Feed Sample $(20 \times 150 \text{ Mesh})$
17.	Liberation-limited Grade/Recovery Curve of Dolomite for the
	Mosaic Flotation Feed Sample $(20 \times 150 \text{ Mesh})$
18.	Texture of Locked Dolomite as Revealed from the 2D Sliced Image of
	3D HRXMT Data Set for the CF Feed Sample
19.	Direct-Reverse (Double Float) Flowsheet
20.	Flow Chart for Evaluating Dolomite Depressants
21.	Flowsheet for Evaluating Promising Dolomite Depressants54
22.	Flowsheet with Feed Grinding
23.	Flowsheet for Rougher Concentrate Grinding
24.	Flowsheet for Concentrate Grinding Followed by Dolomite Flotation
25.	Flowsheet for Testing Different Reagents in the Deoiling Step70
26.	Flowsheet for Direct Flotation of the Rougher Concentrate74
27.	Flowsheet for Direct Flotation of the Cleaner Concentrate75
28.	Flowsheet for Dolomite Flotation with Grinding79
29.	Flowsheet for Dolomite Flotation with Phosphate Depressants
30.	Scrubbing Flowsheet for the Rougher Concentrate of CF Feed
31.	Feed Scrubbing Using the Steel Scrubber97
32.	Rougher Concentrate Scrubbing Using the Steel Scrubber
33.	Final Concentrate Scrubbing Using the Steel Scrubber
34.	Rougher Concentrate Scrubbing in Quartz Media103

LIST OF FIGURES (CONT.)

Figure

Page

35.	Final Concentrate Scrubbing in Quartz Media	104
36.	Flowsheet for Scrubbing Feed Preparation	108
37.	Flowsheet for Parametric Scrubbing Testing	110
38.	Flotation Flowsheet for Testing Fe and Al Distribution	119

LIST OF TABLES

Table

1.	Performance Comparison of the Three MgO Removal Methods - CF	5
2.	Capital and Operating Costs Comparison of the Three Processes	5
3.	Average Weight Distribution and Assay of Florida Future Phosphate	
	Deposit	7
4.	Average Chemical Analyses of Flotation Concentrates	7
5.	Size Distribution of the CF Phosphate Matrix	11
6.	Chemical Analysis of the CF Feed	12
7.	Chemical Analysis of the Mosaic Feed	12
8.	Size Distribution of the CF Feed	13
9.	Size Distribution of the Mosaic #1 Feed	13
10.	Size Distribution of the Mosaic #2 Feed	13
11.	Mineralogical Compositions (Wt. %) of Test Samples.	14
12.	Monomer Liberation Measurements	17
13.	Chemical Analysis of a Phosphate Particle	17
14.	Chemical Analysis of Flotation Feed Samples	25
15.	Mineralogical Analysis of Flotation Feed Samples	25
16.	Mineralogical Analyses by HRXMT	26
17.	Direct-Reverse Flotation Conditions	37
18.	Baseline Double Float Five Parallel Test Results and Their Average	
	Values	37-38
19.	Test Conditions for Evaluating Dolomite Depressants	40
20.	Dolomite Depressants Evaluation Test Results	41-50
21.	Test Results Using the Complete Crago Flowsheet	52
22.	Flotation Operating Conditions	55
23.	Complete Flowsheet Test Results Using CF Feed	56-57
24.	Complete Flowsheet Test Results Using Mosaic #1 Feed	58-59
25.	Complete Flowsheet Test Results Using Mosaic #2 Feed	60-61
26.	Double Float Testing Results with Feed Grinding	65
27.	Flotation Results with Rougher Concentrate Grinding	67
28.	Test Results with Concentrate Grinding	69
29.	Effect of Deoiling Agents on MgO Content in the Concentrate	71-72
30.	Results from Direct Flotation of the Rougher Concentrate	76
31.	Results from Direct Flotation of the Cleaner Concentrate	77
32.	Dolomite Collector Comparison with Concentrate Grinding	80
33.	Concentrate Flotation Results with Varying Grinding Time (Fineness).	81-82
34.	Experimental Conditions for Dolomite Flotation with Phosphate	
	Depressants	85
35.	Dolomite Flotation Results with Phosphate Depressants	86-89
36.	Sizing Analyses of the Rougher Concentrate from CF Feed	92
37.	Sizing Analyses of the Final Concentrate from CF Feed	92
38.	Flotation Results with Rougher Concentrate Scrubbed	94

LIST OF TABLES (CONT.)

Table

Page

39.	Scrubbing Test Results on Flotation Feed in Steel Balls Media	100
40.	Scrubbing Test Results on Rougher Concentrate in Steel Balls Media.	101
41.	Scrubbing Test Results on Final Concentrate in Steel Balls Media	
42.	Scrubbing Test Results on Rougher Concentrate in Quartz Media	
43.	Scrubbing Test Results on Final Concentrate in Quartz Media	
44.	Operating Conditions for Scrubbing Feed Preparation	
45.	Scrubbing Results at Different Ratios of Quartz Sand	111-112
46.	Scrubbing Results at Different Solids Concentrations	113
47.	Scrubbing Results at Different Scrubbing Times	114
48.	Scrubbing Results at Different Impeller Speeds	115
49.	Scrubbing Results at Using Different Scrubbing Media	116
50.	Screen Analysis of the Final Scrubbed Concentrate	117
51.	Analyses of Fe ₂ O ₃ and Al ₂ O ₃ under Different Test Conditions	120-122
52.	Performance Comparison of the Three MgO Removal Methods - CF.	124
53.	Capital and Operating Costs Comparison of the Three Processes	124
53.	Capital and Operating Costs Comparison of the Three Processes	124

EXECUTIVE SUMMARY

The objective of this project is to conduct laboratory flotation tests for developing reagent schemes to reduce MgO content in the flotation concentrate from processing high-dolomite phosphate deposits in Florida.

In 1989, FIPR conducted a characterization study of the future Florida phosphate resources. Detailed analyses of numerous core samples showed the following: (1) the MgO concentration in the upper zone would not pose a major problem for both the pebble and concentrate; (2) the pebble fraction in the lower zone is smaller but contains higher dolomite, averaging 6.19% MgO; and (3) the concentrate in the lower zone averages 1.2% MgO. These results suggest that MgO will be a problem with both the pebble and concentrate as phosphate mining moves into the lower-zone areas.

Since the ratio of concentrate to pebble will be higher in the future, reducing MgO content in the concentrate by a small margin would allow blending of a large portion of the high-dolomite pebble. FIPR proposes to develop techniques to reduce MgO content in the concentrate with little or no change to the current processing flowsheet. This objective may be achieved by focusing on the fatty acid flotation step. The ideal way of doing this is to depress dolomite while floating phosphate. This research program progressed with the close guidance of the FIPR Beneficiation Technical Advisory Committee and the two participating companies. As a result, the actual work deviated from the original proposal quite substantially in the following three aspects: (1) addition of scrubbing testing, (2) determination of Fe and Al distribution when a dolomite depressant is added, and (3) extensive testing of different dolomite flotation flowsheets.

SAMPLE COLLECTION AND CHARACTERIZATION

Both CF Industries and Mosaic made special efforts to drill core samples from their high-dolomite deposits. These cores were washed and sized using the standard lab procedures to produce the flotation samples for this project. CF produced one composite float feed of about 1000 dry pounds within the size range of 20×150 mesh, analyzing 7.72% P₂O₅, 0.48% MgO and 73.92% Insol. Mosaic provided two composite float samples each weighing about 500 pounds, with Sample #1 analyzing 6.53% P₂O₅, 0.59% MgO and 77.38% Insol, and Sample #2 analyzing 5.13% P₂O₅, 0.31% MgO and 82.78% Insol.

Mineral liberation analysis, particularly a dolomite liberation study, is critical to this project, because it determines the ultimate limit that any flotation reagent system could achieve in reducing the MgO content in the final concentrate. Mineral liberation studies were carried out in both the Lehigh lab in China and at the University of Utah. High-power microscopic pictures of both uncrushed and crushed particles showed impregnated dolomite and cementation of phosphate with gangue minerals. The samples were also examined by XRD for mineral identification and by high-resolution X-ray micro CT (HRXMT) for liberation analysis. The liberation-limited grade/recovery curves constructed from 3D liberation spectra indicated that only about half of the dolomite could be separated by reverse flotation.

LABORATORY TESTS TO EVALUATE DOLOMITE DEPRESSANTS

These tests were for evaluating dolomite depressants while phosphate was floated using the corresponding fatty acid from each mine. Over 20 reagents were tested as a potential dolomite depressant. Some of these depressants actually increased MgO content in the rougher concentrate, some showed no effect, while the others lowered the MgO content to some degree. The most effective dolomite depressants were found to be carboxymethylcellulose, soluble starch, and polyacrylamide (PAM).

DOLOMITE FLOTATION WITH AND WITHOUT GRINDING

Dolomite depressant screening results indicate that adding a dolomite depressant alone in the fatty acid flotation step can lower the MgO content to some extent, but not to a degree of great success. This limitation may be attributed to non-liberated dolomite in the coarser fraction of the flotation feed. Under this task, several approaches were evaluated to float the dolomite.

Flotation without Grinding

Two dolomite collectors were evaluated for removing dolomite from both rougher concentrate and cleaner concentrate without grinding. Results showed that MgO reduction in the final concentrate was negligible when the rougher concentrate was subject to dolomite flotation. Flotation of the cleaner concentrate was more effective but not significant.

Grinding of Flotation Feed Followed by Flotation

Sizing analyses of the flotation feeds show that a majority of the dolomite is concentrated in the small amount of +0.5 mm fractions. For example, the +0.5 mm fraction accounts for 8.62% of the CF feed, and contains 1.46% MgO, or 28.28%, of the total MgO; the corresponding numbers for the Mosaic feed #1 are 7.55%, 2.14% and 31.33%. Grinding the flotation feed naturally makes some sense, but the results are not encouraging because of the significant loss of P₂O₅. This approach is therefore not recommended.

Grinding of Rougher Concentrate Followed by Flotation

This approach achieved a small reduction of MgO in the final concentrate, but with significant sacrifice of phosphate recovery.

Grinding of the Final Concentrate Followed by Flotation

The concentrate from the double float process was ground, followed by a dolomite flotation step to further reduce MgO content. This method obtained a final concentrate with the lowest MgO content, but phosphate loss was also appreciable.

SCRUBBING TESTS

Direct Scrubbing

After acid washing, the rougher concentrate was scrubbed and deslimed three times, which showed appreciable MgO reduction in the final concentrate. Dolomite in the slimes accounted for 28.32% of the total dolomite in the feed.

Scrubbing with Hard Media

Encouraged by the above scrubbing test, more scrubbing experiments were conducted to study the effect of scrubbing media, steel balls and quartz granules, on dolomite removal. The diameter of steel balls used was 0.8 mm. The scrubber was made of stainless steel with double stainless steel impellers. This type of scrubber can handle high-solids scrubbing, thus requiring a large sample load.

Scrubbing tests with steel balls on the original feed, rougher concentrate and final concentrate were conducted. Scrubbing of the final concentrate resulted in the highest MgO reduction and the lowest loss of phosphate.

Scrubbing tests were also carried out with quartz granules on the rougher concentrate and final concentrate. Again, the best results were achieved in scrubbing the final concentrate. Overall, quartz was a better scrubbing media than steel balls in this application.

DETERMINATION OF IRON AND ALUMINUM DISTRIBUTION

By request of a participating company in the project, the effects of dolomite depressants on distributions of Fe_2O_3 and Al_2O_3 were analyzed. Results indicated that

most of the Fe and Al reported to the rougher concentrate or the final concentrate, regardless of what depressant was used.

SCREENING OF PHOSPHATE DEPRESSANTS

Numerous phosphate depressants were tested, including acidic, neutral and alkaline reagents. In these tests the cleaner concentrate was ground at 60% solids for 9 minutes to 45.22% passing 200 mesh, followed by dolomite flotation at 30% solids. The most effective phosphate depressant was found to be phosphoric acid, giving both high grade and recovery.

PRELIMINARY ECONOMIC ANALYSIS

Based on the extensive laboratory comparative tests, three approaches were selected as potential dolomite removal methods. Preliminary economic analyses of these methods are shown below.

Addition of Dolomite Depressant

In this process, the flotation feed slurry at about 70% solids was first conditioned with a pH modifier and phosphate collector, as is practiced currently in Florida. The dolomite depressant, a polyacrylamide, was added prior to dilution of the slurry to 30% solids followed by flotation. The dosage of the depressant was about one kilogram per ton of feed. This process could reduce MgO content in the concentrate to about 0.81%.

Reverse Flotation of Amine Concentrate

In this process, the final concentrate from the Crago process was dewatered to about 60% solids and ground to 45.22% passing 200 mesh. The ground feed was conditioned at 30% solids with sulfuric acid (2.75 kg/ton feed) and the dolomite collector USPA-31 (1 kg/ton feed). In this manner, MgO content in the final product can be reduced to about 0.7%.

Scrubbing in Quartz Sand Media

The amine concentrate from the Crago process was dewatered. The scrubbing media, quartz sand, was then added at a quartz-to-concentrate ratio of 1:2 by weight. The mixture was adjusted to about 60% solids and scrubbed for 40 minutes in a specially designed scrubber at a speed of 1500 RPM. After scrubbing, the final product contained 0.81% MgO.

Table 1 summarizes the performance parameters of the above-discussed three approaches.

Broads	Droduct	Viold (0/)	Grade (%)		Recovery
FIOCESS	Floduct	1 leiu (%)	BPL	MgO	(%)
	Concentrate	22.12	67.96	0.81	
Dolomite Depression	Total Tails	77.88	2.78	0.36	87.37
	Feed	100.00	17.20	0.46	
Dolomite Flotation	Concentrate	19.09	65.86	0.72	
	Total Tails	80.91	5.21	0.45	74.85
	Feed	100.00	16.79	0.50	
	Concentrate	21.58	67.11	0.81	
Scrubbing in Quartz Sand	Total Tails	78.42	2.93	0.43	86.30
	Feed	100.00	16.78	0.51	

 Table 1. Performance Comparison of the Three MgO Removal Methods – CF.

Compared with the standard Crago process, the only extra cost for the dolomite depression process was the addition of one kilogram of polyacrylamide per ton of flotation feed.

Dolomite flotation of the Crago concentrate adds a grinding operation and associated costs, the dolomite flotation and scavenging steps, sulfuric acid (2.75 kilograms per ton of feed) for pH adjustment and phosphate depression, and the dolomite collector (USPA-31 at 1.0 kg/ton).

The scrubbing process includes two scrubbing steps and two desliming operations, plus the quartz sand scrubbing media.

A rough cost estimate for the three processes is shown in Table 2.

 Table 2. Capital and Operating Cost Comparison of the Three Processes.

Drocoss	Capital Cost	Operating Cost	Maintenance Fee	
Process	(\$/Ton)	(\$/Ton)	(\$/Ton)	
Dolomite Depression	None	4.75-6.35	None	
Dolomite Flotation	23.8-31.7	15.8		
Scrubbing	12.7-15.8	3.2-4.7		

The dolomite depression process is the simplest method, and only adds an extra cost for the depressant at 1.0 kg/ton, which translates to a cost of \$5.4 per ton of product at a price of \$1,190 per ton for the depressant.

The dolomite flotation approach involves capital investment for both grinding and flotation (\$23.8-31.7 per ton of product) as well as operating and maintenance costs (\$15.8 per ton of product).

Although the scrubbing process requires capital investment (\$12.7-15.8 per ton), its operating cost is low (\$1.6-3.2 per ton).

Among the three approaches, the dolomite flotation process gave the lowest MgO content in the final concentrate, but reduced phosphate recovery by over 10% with high capital and operating costs. Unless it is absolutely necessary to achieve a concentrate with 0.7% or less MgO, the dolomite flotation method is not recommended. The scrubbing process offers the following three major advantages: (1) it does not require any chemical; (2) the quartz sand used as scrubbing media is inexpensive and reusable; and (3) the operating cost is low. Therefore, the scrubbing technique is strongly recommended for further extensive testing.

INTRODUCTION

The United States is one of the major phosphate rock producers of the world, while Florida is the largest producer in America, accounting for roughly a quarter of the world's production.

With the depletion of the higher-grade, easy-to-process Bone Valley deposits, the central Florida phosphate industry has moved into the lower-grade, high-dolomite ore bodies from the Southern Extension. The phosphate deposits in the Southern Extension may be divided into two zones: an upper zone and a lower zone. The upper zone is readily processable using the current technology, but the lower zone is highly contaminated by dolomite. Geological and mineralogical statistics show that about 50% of the future phosphate resource would be wasted if the lower zone is bypassed in mining, and that about 13% of the resource would be wasted if the dolomitic pebbles in the lower zone are discarded.

In a study by El-Shall and Bogan (1994a), FIPR conducted a comparative evaluation on five seemingly promising flotation processes for separating dolomite from phosphate, utilizing the same flotation feed. Two of the processes failed to produce a concentrate of less than 1% MgO, and all the processes gave very poor overall phosphate recovery, ranging from 30-60%.

In 1989, FIPR conducted a comprehensive characterization study of the future phosphate resources in Florida (El-Shall and Bogan 1994b). Tables 3 and 4 show some analytical results on numerous core samples.

Zone	Product	Wt. %	% P ₂ O ₅	% MgO	% Insol
Linnan Zana (220/ of the	Pebble	11	27.8	0.52	12.0
total thickness)	Feed	69	7.0	0.12	75.9
total thickness)	Clay	20	8.7	1.90	46.1
	Pebble	8	17.0	6.19	13.9
Lower Zone (67%)	Feed	58	7.0	0.67	29.1
	Clay	34	2.2	11.50	69.3

Table 3. Average Weight Distribution and Assay of Florida Future PhosphateDeposit.

Tab	ole 4.	Average	Chemical	Analyses	(Wt.	%) of	'Flotation	Concentrates.
-----	--------	---------	----------	----------	------	-------	------------	----------------------

Zone	P_2O_5	CaO	MgO	Fe ₂ O ₃	Al_2O_3	Na ₂ O	F	Insol
Upper	31.9	46.6	0.43	1.4	0.85	0.62	3.7	3.6
Lower	28.6	44.8	1.21	1.6	0.70	0.69	3.4	4.8

From these data, we can draw the following significant conclusions for developing processes for removing dolomite:

- 1. The MgO concentration in the upper zone would not pose a major problem for both the pebble and concentrate.
- 2. The pebble fraction in the lower zone is smaller but contains higher dolomite, averaging 6.19 % MgO.
- 3. The concentrate in the lower zone would average 1.2% MgO.

These results suggest that MgO will be a problem with both the pebble and concentrate as phosphate mining moves deeper. Since the ratio of concentrate to pebble will be higher in the future, reducing MgO content in the concentrate by a small margin would allow blending of a large portion of the high-dolomite pebble.

Therefore, FIPR initiated this in-house project to develop reagent systems to reduce MgO content in the concentrate with little or no change to the current processing flowsheet, thus allowing blending of low-grade, dolomitic pebbles.

The project includes seven tasks, which are described briefly below.

TASK 1. SAMPLE COLLECTION AND CHARACTERIZATION

Three high-dolomite flotation feeds, 500 lbs. each, were collected from two operating mines in central Florida. Detailed characterizations were conducted on these samples, including chemical analysis for MgO, CaO, P₂O₅, Fe₂O₃, Al₂O₃ and Insol, size distribution, mineralogical analysis, and dolomite liberation analysis.

TASK 2. LAB TESTS TO EVALUATE DOLOMITE DEPRESSANTS

Dolomite depressants were evaluated while phosphate was floated using the corresponding fatty acid from each mine. Dolomite depressants tested include sodium silicate, starch combined with carboxylic acids, carboxymethylcellulose, citric acid, naphthyl anthyl sulfonates, humic acid, nonylphenyltetraglycol ester, certain cations, etc.. After an initial screening, the most promising depressants were further tested to optimize major parameters, such as pH, conditioning solids and time, collector and depressant dosages, and flotation time.

TASK 3. LAB TESTS TO EVALUATE PHOSPHATE DEPRESSANTS

In this task, phosphate depressants were evaluated while dolomite was floated using the FIPR dolomite collector USPA-31 (Gao and others 2003). The following phosphate depressants were tested: hydrofluosilicic acid, orthophosphoric acid, phosphoric acid, diphosphonic acid, sulfuric acid, aluminum sulfate and tartaric acid, dipotassium hydrogen phosphate, sodium tripolyphosphate, alizarin red S (ARS), ethoxylated alkyl phenol, and starch (Zhang and others 2008).

TASK 4. EXPLORATORY FLOWSHEET DEVELOPMENT

Test results indicated that adding dolomite depressant alone in the fatty acid flotation step could lower the MgO content to some extent, but not to a degree of great success. This limitation may be attributed to non-liberated dolomite in the coarser fraction of the flotation feed. Therefore numerous approaches were evaluated to increase the odds of success. These approaches included the following:

- 1. Grinding the flotation feed followed by the Crago process.
- 2. Grinding the rougher concentrate in the Crago process.
- 3. Adding different reagents in the deoiling step.
- 4. Direct dolomite flotation of the feed.
- 5. Dolomite flotation of the final concentrate without grinding.
- 6. Dolomite flotation of the rougher concentrate followed by amine flotation.
- 7. Grinding the final concentrate followed by dolomite flotation.
- 8. Grinding the final concentrate followed by dolomite flotation with addition of a phosphate depressant.

Since the last approach proved to be the most effective, further parametric tests were conducted to optimize both the grinding and flotation parameters.

TASK 5. SCRUBBING TESTING

Extensive scrubbing testing was conducted since this method is inexpensive and some initial experiments achieved promising results. These tests included direct scrubbing of rougher concentrate, scrubbing of flotation feed with steel balls or quartz granules, scrubbing of rougher concentrate with steel balls or quartz granules, and scrubbing of the final concentrate with steel balls or quartz granules.

TASK 6. DETERMINATION OF IRON AND ALUMINUM DISTRIBUTION

By request of a participating company in the project, the effects of dolomite depressants on distributions of Fe_2O_3 and Al_2O_3 were analyzed.

TASK 7. PRELIMINARY ECONOMIC ANALYSIS

Based on the extensive laboratory comparative tests, three approaches were selected as potential dolomite removal methods. They included addition of a dolomite depressant in the fatty acid flotation step, dolomite flotation of the amine concentrate after grinding, and scrubbing of amine concentrate. Both capital and operating costs were estimated for the three selected systems.

SAMPLE PREPARATION AND CHARACTERIZATION

SAMPLE COLLECTION AND SHIPPING

Both CF Industries and Mosaic made special efforts to drill core samples from their high-dolomite deposits. These cores were washed and sized using the standard lab procedures to produce the flotation samples for this project.

A size analysis of the CF matrix is shown in Table 5.

Size (Mesh) Range	% Wt.
+1/2	0.03
$\frac{1}{2} \times 3$	0.24
3×16	6.97
16×20	1.70
20×50	56.65
-150	34.41

Table 5. Size Distribution of the CF Phosphate Matrix.

CF produced one composite float feed of about 1000 dry pounds within the size range of 20×150 mesh. This sample was shipped wet and received by Lehigh on May 7, 2007.

Mosaic provided two composite float samples each weighing about 500 pounds, generated by washing multiple cores from their Ona reserve. These samples arrived at the Lehigh lab on June 29, 2009.

The project was officially started on August 1, 2009.

SAMPLE PREPARATION

In the Lehigh mineral processing lab, each sample was well mixed again, a twokilogram sample was taken for chemical and mineralogical analyses, and the remaining samples were split evenly, with one part used for lab tests and the other half stored for future use. The entire sample preparation flowsheet is shown in Figure 1.

To Flotation

Figure 1. Sample Preparation Chart.

CHEMICAL AND SIZE ANALYSES

Tables 6 and 7 show chemical analyses of the three flotation feed samples, and corresponding sizing analysis results are listed in Tables 8-10.

 Table 6. Chemical Analysis of the CF Feed.

Sampla	Analysis, %					
Sample	P_2O_5	BPL	MgO	Insol		
CF Feed	7.72	16.87	0.48	73.92		

Table 7. Chemical Analysis of the Mosaic Feed.

Sampla	Analysis, %						
Sample	P_2O_5	BPL	MgO	Insol			
Mosaic #1	6.53	14.27	0.59	77.38			
Mosaic #2	5.13	11.21	0.31	82.78			

Sieve Erection	\mathbf{W}	(%) Analysis (%)				Distribution (%)		
Sieve Fraction	Wt. (%)	P_2O_5	BPL	MgO	A.I.	BPL	MgO	A.I.
+0.5 mm	8.62	16.96	37.06	1.46	42.42	18.81	28.28	4.91
-0.5 + 0.3 mm	21.00	9.78	21.37	0.54	68.26	26.42	25.48	19.25
-0.3 + 0.16 mm	61.35	6.08	13.28	0.25	80.33	47.99	34.47	66.18
-0.16 mm	9.03	5.83	12.74	0.58	79.65	6.77	11.77	9.66
Total	100.00	7.77	16.98	0.45	74.47	100.00	100.00	100.00

 Table 8. Size Distribution of the CF Feed.

Table 9. Size Distribution of the Mosaic #1 Feed.

Sigue Erection $Wt (0/)$	Analysis (%)				Distribution (%)			
Sieve Flaction	Wt. (%)	P_2O_5	BPL	MgO	A.I.	BPL	MgO	A.I.
+0.5 mm	7.55	13.75	30.04	2.14	47.43	15.87	31.33	4.62
-0.5 + 0.3 mm	23.94	7.48	16.34	0.53	74.16	27.38	24.60	22.90
-0.3 + 0.16 mm	58.15	5.24	11.45	0.30	82.71	46.59	33.83	62.03
-0.16 mm	10.36	6.41	14.01	0.51	78.25	10.15	10.24	10.46
Total	100.00	6.54	14.29	0.52	77.54	100.00	100.00	100.00

Table 10. Size Distribution of the Mosaic #2 Feed.

Sigue Erection $Wt (0/)$	Analysis (%)				Distribution (%)			
Sieve Flaction	Wt. (%)	P_2O_5	BPL	MgO	A.I.	BPL	MgO	A.I.
+0.5 mm	3.74	13.90	30.37	1.75	48.53	9.94	22.32	2.19
-0.5 + 0.3 mm	11.83	7.35	16.06	0.41	75.35	16.62	16.54	10.78
-0.3 + 0.16 mm	69.26	4.22	9.22	0.18	86.50	55.87	42.51	72.45
-0.16 mm	15.17	6.06	13.24	0.36	79.45	17.57	18.62	14.58
Total	100.00	5.23	11.43	0.29	82.69	100.00	100.00	100.00

MINERALOGICAL ANALYSIS

The deslimed flotation feeds contain particles of below 1 mm in size, showing the following colors: white, black, brown, and red. Polarizing microscopic analysis identified the major minerals quartz, francolite and dolomite, with minor amounts of feldspar and iron oxide. Detailed mineral compositions of the three samples are shown in Table 11.

Sample	Francolite	Dolomite	Quartz	Feldspar	Iron Oxide	Others
CF	18	3	75	1	1	1
Mosaic #1	15	3	78	1	1	1
Mosaic #2	12	2	82	1	1	1

Table 11. Mineralogical	Compositions ((Wt. %)	of Test Samples.
-------------------------	----------------	---------	------------------

Francolite Structures

The phosphate (francolite) in the test samples existed in the following five structures:

- 1. Siliceous rock, consisting of francolite cemented with fine quartz particles. In this structure, cemented particles accounted for 70-90% of the rock.
- 2. Siliceous pellet rock, composed of cemented phosphate rock with a brown color due to iron contamination, and granules of francolite, quartz and feldspar.
- 3. Granule rock: mainly oolitic-shape francolite granules ranging from 0.2-0.8 mm in size, cemented with quartz crumbs inside, impregnated with some -0.02 mm carbonate particles, and sometimes coated by carbonates.
- 4. Bulk rock: all francolite with three different colors, yellowish brown, black or opaque.
- 5. Bio-formation fragments: these were mainly apatite with bunchy or radial shapes, having some features of microorganism structure such as animal teeth.

With the exception of the bio-formation fragments, the above-discussed phosphate rock types all contained impregnated quartz particles of about 0.02 mm in size and carbonate particles of -0.02 mm. This type of carbonate impregnation will have a pronounced effect on MgO content in the final concentrate.

Carbonate Structures

There were three types of carbonate minerals in the samples, as discussed below.

1. Clayey dolomite: consisting of mainly dolomite in fine aggregates, colorless with some showing brownish yellow or gray due to iron or carbon

contaminations, sometimes associated with small amounts of fine silica or francolite.

- 2. Silica-cemented dolomite: composed of dolomite cemented with fine quartz particles and francolite granules, accounting for more than 70% of the dolomite in the test samples.
- 3. Sandy dolomite: fine dolomite particle aggregates cemented with various fine mineral particles such as quartz and francolite, with quartz being isometric particles ranging from 0.1 to 0.2 mm and francolite being homogeneous spherical particles of around 0.2 mm in size.

Quartz Structure

The quartz rock was composed of quartz granules inlayed in each other, while the sandy silica included crumbs of quartz.

MINERAL LIBERATION ANALYSIS

Mineral liberation analysis, particularly a dolomite liberation study, was critical to this project, because it determined the ultimate limit that any flotation reagent system could achieve in reducing the MgO content in the final concentrate. Mineral liberation studies were carried out in both the Lehigh lab and at the University of Utah.

THE LEHIGH INVESTIGATION

The flotation feed samples were screened into different size fractions, with each fraction measured for francolite liberation; the results are shown in Table 12.

Sizo (mm)	Francolite Liberation Degree (%)					
Size (mm)	CF	Mosaic 1#	Mosaic 2#			
+0.5	78	85	83			
-0.5~+0.3	83	≥90	≥90			
-0.3~+0.16	≥90	≥90	≥90			
-0.16	≥90	≥90	≥90			

 Table 12. Monomer Liberation Measurements.

These results show that liberation extent in the fine fractions did not vary much, since, in actual measurements, when phosphate content in a particle was over 80% this particle was considered to be francolite monomer. However, fine dolomite particles were impregnated in phosphate, which could be observed under the microscope after the phosphate particles were crushed. This type of dolomite was hard to liberate even with fine grinding.

Table 13 shows the chemical analysis of a phosphate particle.

Table 13. Chemical Analysis of a Phosphate Particle.

Component	Content (%)
P ₂ O ₅	29.88
MgO	0.78
Insol	6.83

Figures 2-8 are microscopic photographs of selected samples. Normal petrographic microscope photos of the "pure" phosphate and dolomite particles indicated that they were basically monomers, as shown in Figures 3-5. However, high-power microscopic photos of both uncrushed and crushed particles (Figures 6-8) show impregnated dolomite and cementation of phosphate with gangue minerals.

Figure 2. As-Received CF Sample, Single Polarizing and Orthogonal Photos, 40x.

Figure 3. Concentrate, Single Polarizing and Orthogonal Photos, 40x.

Figure 4. Monomer (>80%) Phosphate and Dolomite Photos.

Figure 5. Phosphate Monomer, Single Polarizing and Orthogonal Photos, 100x.

Figure 6. Crushed Phosphate Monomer, Single Polarizing and Orthogonal Photos, 200x.

Figure 7. Crushed Phosphate Monomer, Single Polarizing and Orthogonal Photos, 100x.

Figure 8. Crushed Dolomite Monomer, Single Polarizing and Orthogonal Photos, 100x.
THE UNIVERSITY OF UTAH STUDY

Phosphate flotation feed samples from two locations (CF and Mosaic #1) were delivered to the Utah lab for preliminary evaluation of dolomite liberation. The chemical analyses are presented in Table 14. The chemical composition reveals that the CF feed is slightly higher in P_2O_5 when compared with Mosaic feed. Conversely, the MgO content and insoluble residues are slightly higher in the Mosaic feed. The samples contain minor amounts of Fe₂O₃ and Al₂O₃.

Table 14. Chemical Analysis of Flotation Feed Samples.

Sample ID	P ₂ O ₅ %	MgO %	Fe ₂ O ₃ %	Al ₂ O ₃ %	Insol
Mosaic Feed	6.75	0.58	0.61	0.33	76.10
CF Feed	8.05	0.55	0.38	0.43	72.80

Semi-quantitative mineralogical analyses are presented in Table 15. Both samples contain about 2.5% dolomite but the extent of liberation has not been established. Of particular concern is the issue of dolomite liberation. In this regard, the samples were examined by XRD for mineral identification and by high resolution X-ray micro CT (HRXMT) for liberation analysis.

Table 15. Mineralogical Analysis of Flotation Feed Samples.

Sample ID	Francolite %	Dolomite %	Quartz %
Mosaic Feed	18.30	2.65	76.10
CF Feed	21.80	2.50	72.80

XRD Analysis

The mineralogical compositions of CF feed and Mosaic feed samples were examined using X-ray diffraction (XRD) analysis of powdered samples. The X-ray diffraction analysis was carried out using a Siemens D5000 X-ray diffractometer. The powder samples were scanned at 20 from 5-50°, with scan speed of -1.2° /min. Figure 9 shows the diffraction patterns for both samples. It is clear that the mineralogical composition is similar in both samples, being mainly composed of quartz, francolite, dolomite, calcite, and clays.

Figure 9. XRD Analyses of CF Feed and Mosaic Feed Samples from Florida Phosphate Rock.

High Resolution X-Ray Microtomography (HRXMT) Analysis

The 3D mineral liberation analyses were carried out using HRXMT data to classify particles in each of the samples into twelve grade classes based on both francolite and dolomite volume percent. These analyses were carried out for both feed samples (CF and Mosaic) from two different Florida phosphate locations. Based on the CT data, four types of minerals (gangue, dolomite, francolite and high-density gangue) were identified/classified and the results are presented in Table 16. The number of particles analyzed for CF and Mosaic samples were 4225 and 8010, respectively.

Minarala	CF S	ample	Mosaic #1 Sample			
winnerais	Volume % No. of Partic		Volume %	No. of Particles		
Silicate	81.84		80.99			
Dolomite	2.11	4005	2.80	8010		
Francolite	15.85	4223	16.11	8010		
Others	0.19		0.09			

Table 10. Willeralogical Allalyses by HRAWI	Table 16.	Mineralogical	Analyses l	by HRXN	ЛT
---	-----------	---------------	------------	---------	----

CF Feed

The HRXMT liberation spectra for francolite and dolomite are shown in Figures 10 and 11, respectively. The spectra show the amount of mineral component of interest in each grade class. Twelve grade classes: 0%, 5%, 15%, 25%, 35%, 45%, 55%, 65%, 75%, 85%, 95% and 100% by volume are used. It is evident that there are very few liberated francolite particles and very few liberated dolomite particles. The number of such particles is so small that they are not seen in the histogram.

CF Feed (850x106 microns) - Francolite

Figure 10. 3D Liberation Spectra of Francolite for the CF Flotation Feed Sample.

CF Feed (850x106 microns) - Dolomite

Figure 11. 3D Liberation Spectra of Dolomite for the CF Flotation Feed Sample.

The liberation-limited grade/recovery curve represents a boundary for separation efficiency. The grade and recovery for any actual separation cannot exceed the limit imposed by this curve. In the best case the actual grade and recovery would fall on the curve and under these circumstances improved separation could only be achieved with further liberation by size reduction. If the grade and recovery for an actual separation falls below the curve, then the separation efficiency is limited by other factors (mineral types, surface composition, slime coating, operating conditions, etc.) in addition to liberation limitations. Basically, the mineral content for all mineral-containing particles in each grade class is calculated and represented as a volume fraction of the total mineral in the feed. The mineral contribution from each grade class beginning with the richest grade class is then accumulated as more and more grade classes are considered until the final grade class, with the least amount of mineral, is considered. The liberation-limited grade/recovery curves constructed from 3D liberation spectra shown in Figures 10 and 11 for the 20×150 mesh ($850 \times 106 \mu m$) CF flotation feed sample are presented in Figures 12 and 13 with respect to francolite and dolomite minerals. It is evident the volume percent dolomite in the feed is low, having a grade of about 2-3% by volume. Furthermore, the results show that half of the dolomite could be separated by reverse flotation, in the best case, into a dolomite concentrate containing ~17% by volume dolomite.

Figure 12. Liberation-Limited Grade/Recovery Curve of Francolite for the CF Flotation Feed Sample (20 × 150 Mesh).

Figure 13. Liberation-Limited Grade/Recovery Curve of Dolomite for the CF Flotation Feed Sample (20 × 150 Mesh).

Mosaic Feed

The overall histograms for 3D liberation analysis of francolite and dolomite in Mosaic feed were constructed from HRXMT data and are presented in Figures 14 and 15, respectively. The spectra show the amount of mineral component of interest in each grade class. Twelve grade classes: 0%, 5%, 15%, 25%, 35%, 45%, 55%, 65%, 75%, 85%, 95% and 100% by volume are used. It is evident that there are very few liberated francolite particles and very few liberated dolomite particles. The number of such particles is so small that they are not seen in the histogram.

Mosaic Feed (850x106 microns) - Francolite

Figure 14. 3D Liberation Spectra of Francolite for the Mosaic Flotation Feed Sample.

Mosaic Feed (850x106 microns) - Dolomite

Figure 15. 3D Liberation Spectra of Dolomite for the Mosaic Flotation Feed Sample.

The liberation-limited grade/recovery curves constructed from the 3D liberation spectra shown in Figures 14 and 15 for the 20×150 mesh ($850 \times 106 \mu m$) Mosaic flotation feed sample are presented in Figures 16 and 17 with respect to francolite and dolomite minerals. It is evident the volume percent of dolomite is low, having a grade of about 2-3% by volume.

Mosaic Feed (850x106 microns) - Francolite

Figure 16. Liberation-Limited Grade/Recovery Curve of Francolite for the Mosaic Flotation Feed Sample (20 × 150 Mesh).

Figure 17. Liberation-Limited Grade/Recovery Curve of Dolomite for the Mosaic Flotation Feed Sample (20 × 150 Mesh).

Conclusions

The results show, for both CF and Mosaic feed material, that little of the dolomite is liberated and extensive separation/removal of dolomite will be difficult. Research funding should be established to further evaluate the texture of the locked dolomite (mineral phase association). For example, Figure 18 illustrates the texture of locked dolomite particles from a 2D slice of the 3D HRXMT data set for the CF feed sample. Further detailed analysis will establish mineral association in the locked particles as well as grain size information. In this way, the best possible phosphate recovery could be estimated for different levels of dolomite removal. In addition, the particle size required for improved liberation should be estimated. Subsequently, grinding experiments should be done to confirm the expected dependence of liberation on particle size and the corresponding expected improvement in the liberation-limited grade/recovery curves.

Figure 18. Texture of Locked Dolomite as Revealed from the 2D Sliced Image of 3D HRXMT Data Set for the CF Feed Sample.

SCREENING OF DOLOMITE DEPRESSANTS

TEST EQUIPMENT

A Denver D-12 flotation machine was used for all the laboratory flotation tests. The machine has a cell volume of 1.2 liters and a conditioner volume of 0.8 liter.

REAGENTS

A 5% solution of sodium silicate (Na₂SiO₃) was prepared as a flotation modifier.

Mosaic provided all the flotation reagents used in their plant, including fatty acid, amine, fuel oil and diesel.

Lianyungang tap water was used in all tests.

BASELINE FLOTATION (DOUBLE FLOAT) TESTS

These tests try to mimic the double float (Crago) process currently practiced in Florida. The flotation feed is conditioned at about 70% solids under the desired pH level for about 5 minutes, and then water is added to achieve a flotation pulp density of about 30%, followed by flotation of phosphate to completion. The rougher flotation concentrate is acid-washed prior to amine flotation. Figure 19 shows the processing flowsheet, and Table 17 lists flotation conditions.

*All reagent dosages are measured by kg/t feed.

Figure 19. Direct-Reverse (Double Float) Flowsheet.

Table 18 shows flotation results using the double float, direct-reverse process. Since these results would be used to compare the effectiveness of different reagent systems, five parallel tests were conducted to obtain a reliable average value.

Table 17. Direct-Reverse Flotation Conditions.

		Operating Conditions											
Operation		Conditioning			Skimming		Reagent, kg/T, Feed						
Operation	Impeller	Agration	Solids	ъЦ	Time	Na.CO.	Fatty	Fuel	No SiO	450	Varosana	Amine	
	Rotation Speed	Actation	%	pm	(Min.)	Na_2CO_3	Acid	Oil	Na ₂ SIO ₃	$\Pi_2 S O_4$			
Phosphate Flotation			26.87	8.8~9.2	2.5	1.0	1.5	0.6	1.0				
Deoiling	1600 (rpm)	1.2 (L/min.)		3.4~4.1	5.0					8.0			
Quartz Flotation				7.4~7.5	4.0	0.5					0.3	1.0	
			1.5	1.5	0.6	1.0	8.0	0.3	1.0				

Table 18. Baseline "Double Float" Five Parallel Test Results and Their Average Values.

Treet		Test Weight (%)					sis (%)			Distribution (%)				
1 est Numbor	Product	weigi	lt (%)	B	PL	M	gO	А	.I.	Bl	PL	MaO	٨	T
Number		Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	MgO	A	.1.
	Concentrate	24.58		64.06		1.00		10.40		92.83		47.85	3.41	
	Tails 4	0.62	25.20	9.09	62.72	0.22	0.98	86.37	12.26	0.33	93.16	0.26	0.71	4.13
	Tails 3	0.85	26.05	5.66	60.84	0.04	0.95	91.10	14.85	0.29	93.44	0.07	1.04	5.17
CF-2	Tails 2	3.66	29.71	4.06	53.85	0.15	0.85	93.71	24.56	0.88	94.32	1.07	4.58	9.74
	Slimes	1.40	31.11	18.27	52.25	9.26	1.23	21.56	24.42	1.51	95.83	25.26	0.40	10.15
	Tails 1	68.89	100.00	1.03	16.96	0.19	0.51	97.66	74.88	4.17	100.00	25.49	89.85	100.00
	Feed	100.00		16.96		0.51		74.88		100.00		100.00	100.00	
	Concentrate	24.95		64.87		0.96		9.77		93.32		52.70	3.27	
	Tails 4	0.50	25.45	4.02	63.67	0.10	0.94	93.46	11.43	0.12	93.43	0.11	0.63	3.90
	Tails 3	0.91	26.36	3.45	61.60	0.10	0.91	95.20	14.31	0.18	93.61	0.20	1.16	5.06
CF-64	Tails 2	5.37	31.73	2.14	51.54	0.11	0.78	96.55	28.22	0.66	94.28	1.30	6.95	12.00
	Slimes	0.88	32.61	17.41	50.61	9.03	1.00	26.00	28.16	0.89	95.16	17.52	0.31	12.31
	Tails 1	67.39	100.00	1.25	17.34	0.19	0.45	97.10	74.62	4.84	100.00	28.17	87.69	100.00
	Feed	100.00		17.34		0.45		74.62		100.00		100.00	100.00	
	Concentrate	24.70		64.81		1.01		7.83		94.18		52.24	2.59	
	Tails 4	0.81	25.50	5.88	62.95	0.24	0.99	90.06	10.43	0.28	94.46	0.41	0.97	3.57
	Tails 3	0.55	26.05	4.50	61.72	0.39	0.97	90.61	12.11	0.14	94.61	0.45	0.66	4.23
CF-91	Tails 2	4.36	30.41	2.99	53.30	0.14	0.85	94.98	23.99	0.77	95.37	1.28	5.55	9.78
	Slimes	1.07	31.48	21.76	52.23	7.58	1.08	26.16	24.07	1.37	96.74	16.93	0.37	10.16
	Tails 1	68.52	100.00	0.81	16.99	0.20	0.48	97.80	74.59	3.26	100.00	28.70	89.84	100.00
	Feed	100.00		16.99		0.48		74.59		100.00		100.00	100.00	

Test		Weight (%)			Analysis (%)					Distribution (%)				
1 est	Product	weig	iit (%)	Bl	PL	М	gO	A	.I.	BI	PL	M-0		т
Nulliber		Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	MgO	А	.1.
	Concentrate	23.80		66.05		1.09		6.19		93.57		47.90	1.98	
	Tails 4	0.26	24.06	39.55	65.76	1.08	1.09	41.63	6.58	0.62	94.18	0.52	0.15	2.12
	Tails 3	0.41	24.47	17.20	64.96	0.73	1.08	71.83	7.66	0.42	94.60	0.55	0.39	2.52
CF-92	Tails 2	5.59	30.05	2.77	53.40	0.09	0.90	95.37	23.96	0.92	95.52	0.93	7.15	9.66
	Slimes	1.34	31.39	13.68	51.71	11.06	1.33	21.23	23.84	1.09	96.61	27.30	0.38	10.05
	Tails 1	68.61	100.00	0.83	16.80	0.18	0.54	97.70	74.52	3.39	100.00	22.80	89.95	100.00
	Feed	100.00		16.80		0.54		74.52		100.00		100.00	100.00	
	Concentrate	24.10		66.12		1.00		6.22		94.30		46.68	2.02	
	Tails 4	0.38	24.48	19.36	65.39	0.54	0.99	69.23	7.20	0.43	94.73	0.40	0.35	2.37
	Tails 3	0.69	25.17	5.86	63.77	0.29	0.97	89.78	9.45	0.24	94.97	0.39	0.83	3.20
CF-93	Tails 2	5.18	30.35	2.77	53.35	0.14	0.83	94.84	24.04	0.85	95.82	1.41	6.62	9.82
	Slimes	1.30	31.65	15.23	51.78	9.78	1.20	25.44	24.09	1.17	97.00	24.66	0.45	10.27
	Tails 1	68.35	100.00	0.74	16.90	0.20	0.52	97.53	74.29	3.00	100.00	26.47	89.73	100.00
	Feed	100.00		16.90		0.52		74.29		100.00		100.00	100.00	
	Concentrate	24.42		65.18		1.01		8.08		93.42		49.40	2.65	
	Tails 4	0.51	24.93	15.58	64.16	0.44	1.00	76.15	9.47	0.47	93.89	0.45	0.52	3.17
	Tails 3	0.68	25.61	7.34	62.66	0.31	0.98	87.70	11.55	0.29	94.18	0.42	0.80	3.97
Average	Tails 2	4.82	30.43	2.95	53.20	0.13	0.85	95.09	24.78	0.83	95.01	1.26	6.15	10.12
	Slimes	1.20	31.63	17.26	51.83	9.34	1.17	24.08	24.76	1.22	96.23	22.45	0.39	10.51
	Tails 1	68.37	100.00	0.94	17.04	0.19	0.50	97.56	74.53	3.77	100.00	26.02	89.49	100.00
	Feed	100.00		17.04		0.50		74.53		100.00		100.00	100.00	

 Table 18 (Cont.).
 Baseline "Double Float" Five Parallel Test Results and Their Average Values.

TESTING OF DOLOMITE DEPRESSANTS

In these tests, a dolomite depressant was added in the fatty acid conditioning stage after the pH modifier was added, as shown in Figure 20. Table 19 lists the flotation conditions. Various dolomite depressants were tested at varying points of addition and dosages, with the results shown in Table 20.

*All reagent dosage in kg/ton feed.

Figure 20. Flow Chart for Evaluating Dolomite Depressants.

Operation Impeller Rotation Impeller Rotation Aer Speed (rpm) (L/ Conditioning 1000 Phosphate Flotation 1600 Total Reagent Consumption				Operating	Conditions				
		G1	Reagent, kg/T Feed						
	Aeration (L/min.)	Solids %	Time (Min.)	Na ₂ CO ₃	Dolomite Depressants	Fatty Acid	Fuel Oil	Na ₂ SiO ₃	
Conditioning	1000		70	5	1.0	Variable	1.5	0.6	
Phosphate Flotation	1600	1.2	30	2.5					1.0
Total Reagent Consumption, kg/T Feed					1.0		1.5	0.6	1.0

Table 19. Test Conditions for Evaluating Dolomite Depressants.

Dolomite Depressants	Test	Draduat	Weight	I	Analysis (%))	D	istribution (%	6)
(kg/T, Feed)	Number	Product	(%)	BPL	MgO	A.I.	BPL	MgO	A.I.
		Concentrate	31.64	51.83	1.16	24.76	96.23	73.86	10.51
No Depressant		Tails	68.36	0.94	0.19	97.56	3.77	26.14	89.49
		Feed	100.00	17.04	0.50	74.53	100.00	100.00	100.00
0711		Concentrate	26.59	57.75	1.16	16.43	90.03	60.00	5.89
5/11	CF-7	Tails	73.41	2.32	0.28	94.99	9.97	40.00	94.11
0.5		Feed	100.00	17.05	0.51	74.10	100.00	100.00	100.00
T ' '		Concentrate	27.25	58.30	1.15	15.64	93.19	62.36	5.74
Lignin	CF-17	Tails	72.75	1.60	0.26	96.22	6.81	37.64	94.26
5.0		Feed	100.00	17.05	0.50	74.26	100.00	100.00	100.00
		Concentrate	31.34	52.57	1.17	22.36	95.23	73.76	9.53
Alizarin Red	CF-20	Tails	68.66	1.20	0.19	96.94	4.77	26.24	90.47
1.0		Feed	100.00	17.30	0.50	73.57	100.00	100.00	100.00
		Concentrate	28.09	58.27	1.07	15.63	95.86	63.52	5.92
	CF-21	Tails	71.91	0.98	0.24	96.95	4.14	36.48	94.08
1.0		Feed	100.00	17.08	0.47	74.11	100.00	100.00	100.00
		Concentrate	23.51	56.50	1.44	15.95	76.07	67.82	5.10
20	CF-23	Tails	76.49	5.46	0.21	91.27	23.93	32.18	94.90
2.0		Feed	100.00	17.46	0.50	73.56	100.00	100.00	100.00

Table 20. Dolomite Depressants Evaluation Test Results.

Dolomite Depressants	Test	Product	Weight	I	Analysis (%))	D	istribution (%	6)
(kg/T, Feed)	Number	Product	(%)	BPL	MgO	A.I.	BPL	MgO	A.I.
Calable Charab		Concentrate	29.93	53.69	1.11	20.35	95.54	69.31	8.23
Soluble Starch	CF-24	Tails	70.07	1.07	0.21	96.88	4.46	30.69	91.77
1.0		Feed	100.00	16.82	0.48	73.97	100.00	100.00	100.00
Calfornata di Hannia Asi d		Concentrate	1.63	51.81	2.98	12.61	5.00	9.33	0.28
	CF-25	Tails	98.37	16.30	0.48	75.14	95.00	90.67	99.72
1.0		Feed	100.00	16.88	0.52	74.12	100.00	100.00	100.00
	CF-26	Concentrate	23.60	58.49	1.13	15.62	79.75	52.97	4.99
0.3		Tails	76.40	4.59	0.31	91.88	20.25	47.03	95.01
		Feed	100.00	17.31	0.50	73.88	100.00	100.00	100.00
		Concentrate	27.04	59.13	1.05	15.44	91.68	59.03	5.64
Dewatering Agent NF	CF-32	Tails	72.96	1.99	0.27	95.78	8.32	40.97	94.36
1.5		Feed	100.00	17.44	0.48	74.06	100.00	100.00	100.00
		Concentrate	28.59	56.37	1.20	18.64	93.06	69.59	7.21
l artaric Acid	CF-34	Tails	71.41	1.68	0.21	96.04	6.94	30.41	92.79
1.0		Feed	100.00	17.32	0.49	73.91	100.00	100.00	100.00
		Concentrate	12.12	60.44	1.56	11.61	45.23	38.07	1.87
	CF-37	Tails	87.88	10.09	0.35	84.10	54.77	61.93	98.13
1.0		Feed	100.00	16.20	0.50	75.31	100.00	100.00	100.00

 Table 20 (Cont.).
 Dolomite Depressants Evaluation Test Results.

Dolomite Depressants	Test	Product	Weight	1	Analysis (%))	D	istribution (%	6)
(kg/T, Feed)	Number	Floduct	(%)	BPL	MgO	A.I.	BPL	MgO	A.I.
		Concentrate	27.41	59.83	1.05	14.82	95.04	53.83	5.52
Polyacrylamide (PANI)	CF-38	Tails	72.59	1.18	0.34	95.78	4.96	46.17	94.48
0.5		Feed	100.00	17.25	0.53	73.59	100.00	100.00	100.00
DAM		Concentrate	26.31	60.92	1.01	13.14	92.91	52.98	4.67
PAM	CF-40	Tails	73.69	1.66	0.32	95.68	7.09	47.02	95.33
0.8		Feed	100.00	17.25	0.50	73.97	100.00	100.00	100.00
ID		Concentrate	31.67	53.12	1.10	23.12	97.32	69.86	9.89
JD 0.1	CF-42	Tails	68.33	0.68	0.22	97.60	2.68	30.14	90.11
0.1		Feed	100.00	17.29	0.50	74.01	100.00	100.00	100.00
PAM		Concentrate	26.37	60.48	0.90	15.54	92.62	51.79	5.51
0.5	CF-43	Tails	73.63	1.73	0.30	95.50	7.38	48.21	94.49
KCl 1.0		Feed	100.00	17.22	0.46	74.42	100.00	100.00	100.00
PAM		Concentrate	24.62	61.31	0.90	12.52	88.94	46.37	4.16
0.5	CF-44	Tails	75.38	2.49	0.34	94.27	11.06	53.63	95.84
S711 0.5		Feed	100.00	16.97	0.48	74.14	100.00	100.00	100.00
PAM		Concentrate	82.18	17.28	0.30	74.54	81.08	46.37	84.01
0.5	CF-45	Tails	17.82	18.59	1.60	65.40	18.92	53.63	15.99
Al ₂ (SO ₄) ₃ 1.0		Feed	100.00	17.52	0.53	72.91	100.00	100.00	100.00

 Table 20 (Cont.).
 Dolomite Depressants Evaluation Test Results.

Dolomite Depressants	Test	Draduat	Weight	I	Analysis (%))	D	istribution (%	6)
(kg/T, Feed)	Number	Product	(%)	BPL	MgO	A.I.	BPL	MgO	A.I.
PAM		Concentrate	29.76	55.19	1.06	19.84	95.20	59.16	8.02
0.5	CF-46	Tails	70.24	1.18	0.31	96.39	4.80	40.84	91.98
Al ₂ (SO ₄) ₃ 0.5		Feed	100.00	17.25	0.53	73.61	100.00	100.00	100.00
PAM		Concentrate	22.29	62.64	0.85	11.40	81.39	38.47	3.43
0.5	CF-47	Tails	77.71	4.11	0.39	92.01	18.61	61.53	96.57
Carboxymethylcellulose 1.0		Feed	100.00	17.16	0.49	74.04	100.00	100.00	100.00
PAM		Concentrate	28.65	58.78	1.17	16.93	98.09	62.65	6.57
0.5	CF-48	Tails	71.35	0.46	0.28	96.69	1.91	37.35	93.43
JD 0.1		Feed	100.00	17.16	0.53	73.84	100.00	100.00	100.00
PAM		Concentrate	27.89	58.84	1.02	15.89	95.42	56.80	6.00
0.5	CF-50	Tails	72.11	1.09	0.30	96.31	4.58	43.20	94.00
Alum 0.4		Feed	100.00	17.20	0.50	73.88	100.00	100.00	100.00
DAM		Concentrate	30.29	54.36	1.22	20.01	96.69	69.74	8.21
PAM 0.2	CF-52	Tails	69.71	0.81	0.23	97.16	3.31	30.26	91.79
0.3		Feed	100.00	17.03	0.53	73.79	100.00	100.00	100.00
Alum		Concentrate	31.81	52.35	1.20	23.49	97.22	73.68	10.11
	CF-53	Tails	68.19	0.70	0.20	97.46	2.78	26.32	89.89
0.4		Feed	100.00	17.13	0.52	73.93	100.00	100.00	100.00

 Table 20 (Cont.).
 Dolomite Depressants Evaluation Test Results.

Dolomite Depressants	Test	Droduct	Weight	I	Analysis (%))	D	istribution (%	%)
(kg/T, Feed)	Number	Product	(%)	BPL	MgO	A.I.	BPL	MgO	A.I.
PAM		Concentrate	30.83	50.58	0.90	26.64	91.16	54.86	11.14
0.5	CF-54	Tails	69.17	2.19	0.33	94.74	8.84	45.14	88.86
Alum 0.8		Feed	100.00	17.11	0.51	73.75	100.00	100.00	100.00
IZ CIO		Concentrate	33.00	51.02	1.11	25.06	96.72	71.31	11.25
$KCIO_3$	CF-55	Tails	67.00	0.85	0.22	97.38	3.28	28.69	88.75
1.0		Feed	100.00	17.41	0.51	73.51	100.00	100.00	100.00
ID 02		Concentrate	32.43	52.22	1.19	23.74	97.29	77.06	10.44
JD-02 1.5	CF-56	Tails	67.57	0.70	0.17	97.67	2.71	22.94	89.56
1.5		Feed	100.00	17.41	0.50	73.70	100.00	100.00	100.00
		Concentrate	32.65	51.61	1.07		97.36	73.19	10.90
NH_4CI	CF-57	Tails	67.35	0.68	0.19		2.64	26.81	89.10
1.0		Feed	100.00	17.31	0.48	0.00	100.00	100.00	100.00
PAM		Concentrate	22.83	62.23	1.01		83.88	45.36	3.47
0.5	CF-58	Tails	77.17	3.54	0.36		16.12	54.64	96.53
Carboxymethylcellulose 1.0		Feed	100.00	16.94	0.51	0.00	100.00	100.00	100.00
PAM		Concentrate	25.47	61.97	1.02		90.99	49.90	4.59
0.5	CF-59	Tails	74.53	2.10	0.35		9.01	50.10	95.41
Carboxymethylcellulose 1.0		Feed	100.00	17.35	0.52	0.00	100.00	100.00	100.00

 Table 20 (Cont.).
 Dolomite Depressants Evaluation Test Results.

Dolomite Depressants	Test	Dreduct	Weight	I	Analysis (%))	D	istribution (%	%)
(kg/T, Feed)	Number	Concentrate	(%)	BPL	MgO	A.I.	BPL	MgO	A.I.
PAM		Concentrate	26.72	58.69	1.07	15.52	90.15	55.73	5.63
0.50	CF-60	Tails	73.28	2.34	0.31	94.81	9.85	44.27	94.37
Carboxymethylcellulose 0.5		Feed	100.00	17.40	0.51	73.62	100.00	100.00	100.00
PAM		Concentrate	32.33	51.78	1.18	24.23	96.75	72.86	10.64
Anomic	CF-65	Tails	67.67	0.83	0.21	97.28	3.25	27.14	89.36
0.1		Feed	100.00	17.31	0.52	73.66	100.00	100.00	100.00
PAM		Concentrate	18.11	64.81	0.95	8.17	67.91	30.89	2.02
Anomic	CF-66	Tails	81.89	6.77	0.47	87.74	32.09	69.11	97.98
0.1		Feed	100.00	17.28	0.56	73.33	100.00	100.00	100.00
PAM		Concentrate	30.76	54.52	1.13	20.74	97.11	66.76	8.66
Anomic	CF-67	Tails	69.24	0.72	0.25	97.20	2.89	33.24	91.34
0.05		Feed	100.00	17.27	0.52	73.68	100.00	100.00	100.00
11 . #1 D 1		Concentrate	32.24	51.43	1.14	24.49	97.31	73.06	10.67
Hengju #1 Polymer	CF-68	Tails	67.76	0.68	0.20	97.55	2.69	26.94	89.33
0.1		Feed	100.00	17.04	0.50	74.00	100.00	100.00	100.00
Hengju #2 Polymer		Concentrate	30.72	53.71	1.04	21.13	96.72	66.73	8.77
	CF-69	Tails	69.28	0.81	0.23	97.44	3.28	33.27	91.23
0.05		Feed	100.00	17.06	0.48	74.00	100.00	100.00	100.00

 Table 20 (Cont.).
 Dolomite Depressants Evaluation Test Results.

Dolomite Depressants	Test	Draduat	Weight	1	Analysis (%))	D	istribution (%	6)
(kg/T, Feed)	Number	Product	(%)	BPL	MgO	A.I.	BPL	MgO	A.I.
Ц., ., . ¹ .,		Concentrate	30.11	55.39	1.13	19.92	97.15	66.98	8.12
Hengju $\#3$	CF-70	Tails	69.89	0.70	0.24	97.14	2.85	33.02	91.88
0.05		Feed	100.00	17.17	0.51	73.89	100.00	100.00	100.00
II		Concentrate	32.50	50.84	1.21	24.73	96.64	76.39	10.86
Hengju #4	CF-71	Tails	67.50	0.85	0.18	97.67	3.36	23.61	89.14
0.05		Feed	Weight (%)Analys BPL $(\%)$ BPLMg $(\%)$ BPLMg $(\%)$ BPL Mg $(\%)$ 0.11 55.39 1. 69.89 0.70 0.7 100.00 17.17 0.7 100.00 17.17 0.7 100.00 17.10 0.7 100.00 17.10 0.7 100.00 17.10 0.7 100.00 17.12 0.7 100.00 17.12 0.7 100.00 17.12 0.7 100.00 17.54 0.7 100.00 17.54 0.7 100.00 17.28 0.7 100.00 17.28 0.7 100.00 17.63 0.7	0.51	73.97	100.00	100.00	100.00	
TT : 116		Concentrate	33.03	50.12	1.19	26.40	96.67	74.58	11.77
Hengju #5 0.05	CF-72	Tails	66.97	0.85	0.20	97.55	3.33	25.42	88.23
0.05		Feed	100.00	6)BPLMgOA.I.BPL.11 55.39 1.13 19.92 97.15 .89 0.70 0.24 97.14 2.85 0.00 17.17 0.51 73.89 100.00 .50 50.84 1.21 24.73 96.64 .50 0.85 0.18 97.67 3.36 0.00 17.10 0.51 73.97 100.00 0.3 50.12 1.19 26.40 96.67 .97 0.85 0.20 97.55 3.33 0.00 17.12 0.53 74.05 100.00 0.5 50.32 1.17 27.38 97.70 .95 0.61 0.15 97.88 2.30 0.00 17.54 0.50 73.88 100.00 .62 50.91 1.19 24.38 96.08 .38 1.01 0.19 97.61 3.92 0.00 17.28 0.52 73.72 100.00 .15 51.81 1.13 26.08 97.43 .85 0.68 0.21 97.25 2.57 0.00 17.63 0.51 73.66 100.00	100.00	100.00			
II		Concentrate	34.05	50.32	1.17	27.38	97.70	80.10	12.62
Hengju #6	CF-73	Tails	65.95	0.61	0.15	97.88	2.30	19.90	87.38
0.05		Feed	100.00	17.54	0.50	73.88	100.00	100.00	100.00
II ' 117		Concentrate	32.62	50.91	1.19	24.38	96.08	75.20	10.79
Hengju $\#/$	CF-74	Tails	67.38	1.01	0.19	97.61	3.92	24.80	89.21
0.05		Feed	100.00	17.28	0.52	73.72	100.00	100.00	100.00
Hangin #9		Concentrate	33.15	51.81	1.13	26.08	97.43	72.74	11.74
Hengju #8 0.05	CF-75	Tails	66.85	0.68	0.21	97.25	2.57	27.26	88.26
0.05		Feed	100.00	17.63	0.51	73.66	100.00	100.00	100.00

 Table 20 (Cont.).
 Dolomite Depressants Evaluation Test Results.

Dolomite Depressants	Test	Draduat	Weight	1	Analysis (%))	D	istribution (%	6)
(kg/T, Feed)	Number	Product	(%)	BPL	MgO	A.I.	BPL	MgO	A.I.
Шана с и #0		Concentrate	32.04	51.92	1.09	25.18	97.14	69.08	10.85
Hengju #9	CF-76	Tails	67.96	0.72	0.23	97.49	2.86	30.92	89.15
0.05		Feed	100.00	17.12	0.51	74.32	100.00	100.00	100.00
II ' //10		Concentrate	31.44	53.45	1.15	21.95	97.40	72.50	9.34
Hengju $\#10$	CF-77	Tails	68.56	0.66	0.20	97.76	2.60	27.50	90.66
0.05		Feed	100.00	WeightAnalysis (%) $(\%)$ BPLMgO 32.04 51.92 1.09 67.96 0.72 0.23 100.00 17.12 0.51 31.44 53.45 1.15 68.56 0.66 0.20 100.00 17.25 0.50 31.18 54.30 1.18 68.82 0.76 0.23 100.00 17.46 0.53 32.01 52.88 1.20 67.99 0.63 0.20 100.00 17.35 0.52 32.93 50.67 1.12 67.07 0.90 0.24 100.00 17.29 0.53 33.91 50.12 1.15 66.09 0.44 0.17 100.00 17.29 0.50	73.93	100.00	100.00	100.00	
II		Concentrate	31.18	54.30	1.18	21.04	96.99	69.92	8.92
Hengju #11 0.05	CF-78	Tails	68.82	0.76	0.23	97.38	3.01	30.08	91.08
0.05		Feed	100.00	BPLMgOA.I.BPLMgO 51.92 1.09 25.18 97.14 69.08 0.72 0.23 97.49 2.86 30.92 17.12 0.51 74.32 100.00 100.0 53.45 1.15 21.95 97.40 72.50 0.66 0.20 97.76 2.60 27.50 17.25 0.50 73.93 100.00 100.0 54.30 1.18 21.04 96.99 69.92 0.76 0.23 97.38 3.01 30.08 17.46 0.53 73.57 100.00 100.0 52.88 1.20 22.77 97.52 73.85 0.63 0.20 97.70 2.48 26.15 17.35 0.52 73.72 100.00 100.0 50.67 1.12 26.25 96.52 69.62 0.90 0.24 97.25 3.48 30.38 17.29 0.53 73.70 100.00 100.0 50.12 1.15 27.40 98.33 77.65 0.44 0.17 97.46 1.67 22.37 17.29 0.50 73.70 100.00 100.0	100.00	100.00			
Han alia #10		Concentrate	32.01	52.88	1.20	22.77	97.52	73.85	9.89
Hengju $\#12$	CF-79	Tails	67.99	0.63	0.20	97.70	2.48	26.15	90.11
0.05		Feed	100.00	17.35	0.52	73.72	100.00	100.00	100.00
II ' #12		Concentrate	32.93	50.67	1.12	26.25	96.52	69.62	11.70
Hengju #13	CF-80	Tails	67.07	0.90	0.24	97.25	3.48	30.38	88.30
0.05		Feed	100.00	17.29	0.53	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100.00		
Hangin #14		Concentrate	33.91	50.12	1.15	27.40	98.33	77.63	12.61
Hengju #12 0.05 Hengju #13 0.05 Hengju #14 0.05	CF-81	Tails	66.09	0.44	0.17	97.46	1.67	22.37	87.39
0.05		Feed	100.00	17.29	0.50	73.70	100.00	100.00	100.00

 Table 20 (Cont.).
 Dolomite Depressants Evaluation Test Results.

Dolomite Depressants	Test	Draduat	Weight	1	Analysis (%))	D	istribution (%	6)
(kg/T, Feed)	Number	Product	(%)	BPL	MgO	A.I.	BPL	MgO	A.I.
Цана с ед #0		Concentrate	33.98	50.45	1.26	25.62	97.86	78.28	11.87
Hengju #9	CF-82	Tails	66.02	0.57	0.18	97.88	2.14	21.72	88.13
0.05		Feed	100.00	17.52	0.55	73.32	100.00	100.00	100.00
II : //10		Concentrate	33.02	51.52	1.22	25.04	97.16	76.97	11.20
Hengju $\#10$	CF-83	Tails	66.98	0.74	0.18	97.88	2.84	23.03	88.80
0.05		Feed	100.00	17.51	0.52	73.83	100.00	100.00	100.00
TT ' //11		Concentrate	31.56	52.90	1.20	21.83	97.47	71.55	9.36
Hengju #11 0.05	CF-84	Tails	68.44	0.63	0.22	97.49	2.53	28.45	90.64
0.05		Feed	100.00	17.13	0.53	73.61	100.00	Distribution (%) BPL MgO A 97.86 78.28 1 2.14 21.72 83 100.00 100.00 10 97.16 76.97 1 2.84 23.03 83 100.00 100.00 10 97.47 71.55 9 2.53 28.45 90 100.00 100.00 10 97.07 73.09 9 2.93 26.91 90 100.00 100.00 10 97.77 77.29 9 2.23 22.71 90 100.00 100.00 10 97.62 75.96 1 2.38 24.04 8 100.00 100.00 10	100.00
II : #10		Concentrate	31.52	53.40	1.18	21.83	97.07	73.09	9.36
Hengju $\#12$	CF-85	Tails	68.48	0.74	0.20	97.32	2.93	26.91	90.64
0.05		Feed	100.00	17.34	0.51	73.52	100.00	100.00	100.00
11 : #12		Concentrate	32.16	52.57	1.22	22.36	97.77	77.29	9.80
Hengju $\#13$	CF-86	Tails	67.84	0.57	0.17	97.61	2.23	22.71	90.20
0.05		Feed	100.00	17.29	0.51	73.41	100.00	100.00	100.00
Hangin #14		Concentrate	32.52	52.00	1.18	23.68	97.62	75.96	10.43
nengju #14	CF-87	Tails	67.48	0.61	0.18	98.05	2.38	24.04	89.57
0.05		Feed	100.00	17.32	0.51	73.86	100.00	100.00	100.00

 Table 20 (Cont.).
 Dolomite Depressants Evaluation Test Results.

Dolomite Depressants	Test	Droduct	Weight	1	Analysis (%)	D	istribution (9	%)
(kg/T, Feed)	Number	Flouuci	(%)	BPL	MgO	A.I.	BPL	MgO	A.I.
II		Concentrate	33.10	51.57	1.15	24.70	97.82	78.05	11.06
Hengju #21 0.05	CF-88	Tails	66.90	0.57	0.16	98.26	2.18	21.95	88.94
		Feed	100.00	17.45	0.49	73.91	100.00	100.00	100.00
Hamain #22	CF-89	Concentrate	31.62	52.68	1.20	23.62	96.70	73.51	10.07
Hengju #22 0.05		Tails	68.38	0.83	0.20	97.52	3.30	26.49	89.93
		Feed	100.00	17.23	0.52	74.15	100.00	100.00	100.00

 Table 20 (Cont.).
 Dolomite Depressants Evaluation Test Results.

Table 20 presents results from lab-scale evaluation of various dolomite depressants, including inorganic reagents, organic reagents, and organic/inorganic mixtures. Some of these depressants actually increased MgO content in the rougher concentrate, some showed no effect, while the others lowered the MgO content to some degree. most effective dolomite depressants were found to be The carboxymethylcellulose, soluble starch, and polyacrylamide (PAM). In order to determine the effect of the relatively more efficient dolomite depressants on MgO content in the final concentrate, some laboratory tests were conducted with the complete Crago process, fatty acid rougher flotation, acid scrubbing (deoiling) and amine flotation. The results in Table 21 show limited reduction in MgO from the addition of the dolomite depressants.

		Waigh	+ (04)			Analy	vsis (%)				Distribut	ion (%)	
Reagent	Product	weigh	l (%)	BI	PL	Mg	gΟ	A	.I.	BI	PL	MgO	ΔΙ
		Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	MgO	A.I.
	Concentrate	24.42		65.18		1.00		8.08		93.42		49.14	2.65
	Tails 4	0.50	24.92	15.58	64.17	0.44	0.99	76.15	9.46	0.46	93.88	0.45	0.52
	Tails 3	0.67	25.59	7.34	62.68	0.31	0.97	87.70	11.52	0.29	94.17	0.42	0.79
Control	Tails 2	4.83	30.43	2.95	53.20	0.13	0.84	95.09	24.78	0.84	95.01	1.26	6.16
	Slimes	1.20	31.63	17.26	51.83	9.34	1.16	24.08	24.76	1.22	96.23	22.59	0.39
	Tails 1	68.37	100.00	0.94	17.04	0.19	0.50	97.56	74.53	3.77	100.00	26.14	89.49
	Feed	100.00		17.04		0.50		74.53		100.00		100.00	100.00
	Concentrate	22.90		65.55		0.92		7.18		90.31		40.67	2.21
PAM	Tails 2	3.00	25.90	14.29	59.61	2.09	1.06	65.86	13.98	2.58	92.89	12.11	2.66
0.50	Tails 1	74.10	100.00	1.60	16.62	0.33	0.52	95.54	74.42	7.11	100.00	47.21	95.13
	Feed	100.00		16.62		0.52		74.42		100.00		100.00	100.00
	Concentrate	24.07		65.53		0.99		7.69		96.56		45.42	2.49
PAM	Tails 2	3.32	27.39	6.49	58.37	0.19	0.89	89.24	17.58	1.32	97.88	1.20	2.66
0.50	Slimes	0.26	27.65	11.82	57.94	7.59	0.96	25.64	17.65	0.19	98.06	3.73	2.66
Alum 0.4	Tails 1	72.35	100.00	0.44	16.33	0.36	0.52	96.16	74.45	1.94	100.00	49.65	93.44
	Feed	100.00		16.33		0.52		74.45		100.00		100.00	101.25

 Table 21. Test Results Using the Complete Crago Flowsheet.

DETAILED EVALUATION OF FOUR PROMISING DOLOMITE DEPRESSANTS

The dolomite depressant screening results presented above indicate that four of the depressants have the potential to substantially lower MgO content in the final concentrate. They include carboxymethylcellulose (CMC), soluble starch. polyacrylamide (PAM), and Hengju #9. Further flotation tests were conducted to optimize the dosage and flotation parameters for these depressants. In these tests, dolomite depressants were added in the fatty acid flotation step of the double float process. Test samples included Mosaic #1 and #2, and the CF feed. The flotation flowsheet is shown in Figure 21. The flotation feed was first conditioned with fatty acid at 70% solids for five minutes. The conditioned feed was then diluted to 30% solids and floated. The rougher concentrate was acid-scrubbed and washed prior to amine flotation. The major flotation parameters are listed in Table 21.

The effects of different dolomite depressants on flotation of the three test feeds are shown in Tables 22-24.

*Reagent dosage in kg/ton of feed.

Figure 21. Flowsheet for Evaluating Promising Dolomite Depressants.

						Opera	ating Conditions						
		Conditio	oning					F	Reagent,	kg/T Feed			
Operation	Impeller Rotation Speed (rpm)	Aeration (L/min.)	Solids %	рН	Time (Min.)	Na ₂ CO ₃	Dolomite Depressants	Fatty Acid	Fuel Oil	Na ₂ SiO ₃	H_2SO_4	Kerosene	Amine
Phosphate Flotation			26.87	8.8~9.2	2.5	1.0		1.5	0.6	1.0			
Deoiling	1600	1.2		3.4~4.1	5.0		Variable				8.0		
Quartz Flotation				7.4~7.5	4.0	0.5							
	Total Reager	nt Consump	tion, kg/T I	Feed		1.5		1.5	0.6	1.0	8.0		

Table 22. Flotation Operating Conditions.

Doprogent		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ion (%)										
(kg/T Feed)	Product	weigi	n (%)	BI	PL	Mg	ςΟ	А	.I.	BI	PL	MaO	ΔΤ
(Kg/1,1000)		Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	MgO	A.I.
	Concentrate	24.42		65.18		1.00		8.08		93.42		49.14	2.65
	Tails 4	0.50	24.92	15.58	64.17	0.44	0.99	76.15	9.46	0.46	93.88	0.45	0.52
	Tails 3	0.67	25.59	7.34	62.68	0.31	0.97	87.70	11.52	0.29	94.17	0.42	0.79
None	Tails 2	4.83	30.43	2.95	53.20	0.13	0.84	95.09	24.78	0.84	95.01	1.26	6.16
	Slimes	1.20	31.63	17.26	51.83	9.34	1.16	24.08	24.76	1.22	96.23	22.59	0.39
	Tails 1	68.37	100.00	0.94	17.04	0.19	0.50	97.56	74.53	3.77	100.00	26.14	89.49
	Feed	100.00		17.04		0.50		74.53		100.00		100.00	100.00
-	Concentrate	22.90		65.55		0.92		7.18		90.31		40.67	2.21
PAM	Tails 2	3.00	25.90	14.29	59.61	2.09	1.06	65.86	13.98	2.58	92.89	12.11	2.66
0.50	Tails 1	74.10	100.00	1.60	16.62	0.33	0.52	95.54	74.42	7.11	100.00	47.21	95.13
	Feed	100.00		16.62		0.52		74.42		100.00		100.00	100.00
	Concentrate	23.65		66.62		0.89		6.69		90.42		39.74	2.15
	Tails 4	0.51	24.17	18.55	65.60	0.50	0.88	71.41	8.07	0.55	90.97	0.49	0.50
Storah	Tails 3	0.54	24.71	8.57	64.35	0.28	0.87	86.22	9.77	0.27	91.23	0.29	0.63
	Tails 2	4.24	28.95	3.21	55.40	0.14	0.76	94.73	22.22	0.78	92.01	1.12	5.45
1.0	Slimes	1.08	30.02	25.54	54.32	7.26	1.00	25.40	22.33	1.58	93.60	14.78	0.37
	Tails 1	69.98	100.00	1.60	17.43	0.33	0.53	95.71	73.68	6.40	100.00	43.59	90.90
	Feed	100.00		17.43		0.53		73.68		100.00		100.00	100.00

 Table 23. Complete Flowsheet Test Results Using CF Feed.

Reagent Product		Woig	at(0/)			Analy	sis (%)				Distribut	ion (%)	
(kg/T Feed)	Product	weigi	n (%)	BI	PL	Mg	gO	A	.I.	BI	PL	MgO	ΔI
(kg/1, 1 eeu)		Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	MgO	A.I.
	Concentrate	22.37		66.93		1.04		6.09		88.27		44.85	1.83
	Tails 3	0.93	23.30	45.47	66.07	0.88	1.92	34.56	40.65	2.49	90.76	1.58	0.43
CMC	Tails 2	3.35	26.66	8.17	58.79	0.09	0.91	91.23	17.79	1.62	92.38	0.58	4.11
1.0	Slimes	0.93	27.59	19.97	57.48	9.32	1.20	17.36	17.78	1.10	93.47	16.71	0.22
	Tails 1	72.41	100.00	1.53	16.96	0.26	0.52	96.06	74.46	6.53	100.00	36.28	93.41
	Feed	100.00		16.96		0.52		74.46		100.00		100.00	100.00
	Concentrate	24.78		63.74		1.01		11.03		94.21		46.99	3.67
	Tails 4	0.87	25.65	4.50	61.72	0.27	0.98	91.76	13.77	0.23	94.44	0.44	1.07
Uanain #0	Tails 3	0.73	26.37	3.47	60.12	0.20	0.96	93.65	15.97	0.15	94.59	0.27	0.91
nengju #9	Tails 2	3.39	29.76	3.04	53.62	0.23	0.88	94.58	24.92	0.61	95.21	1.46	4.30
0.05	Slimes	0.87	30.63	17.41	52.59	9.57	1.13	22.08	24.84	0.90	96.11	15.65	0.26
	Tails 1	69.37	100.00	0.94	16.76	0.27	0.53	96.37	74.46	3.89	100.00	35.17	89.78
	Feed	100.00		16.76		0.53		74.46		100.00		100.00	100.00

 Table 23 (Cont.).
 Complete Flowsheet Test Results Using CF Feed.

Denneggent		Weigh	(0/)			Analy	sis (%)				Distribut	ion (%)	
(kg/T Eood)	Product	weigi	ll (%)	BI	PL	Mg	gO	A	.I.	BI	ъГ	MaO	АТ
(kg/1, reeu)		Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	MgO	A.I.
	Concentrate	20.58		60.81		1.27		9.45		92.98		52.41	2.49
	Tails 4	0.70	21.29	13.83	59.25	0.52	1.25	78.14	11.72	0.72	93.70	0.73	0.70
	Tails 3	1.93	23.22	3.61	54.63	0.21	1.16	92.80	18.47	0.52	94.22	0.81	2.29
None	Tails 2	5.52	28.74	1.03	44.33	0.02	0.94	97.06	33.56	0.42	94.64	0.22	6.85
	Slimes	0.61	29.35	14.38	43.70	9.61	1.12	20.64	33.29	0.66	95.30	11.82	0.16
	Tails 1	70.65	100.00	0.90	13.46	0.24	0.50	96.86	78.20	4.70	100.00	34.00	87.50
	Feed	100.00		13.46		0.50		78.20		100.00		100.00	100.00
	Concentrate	18.98		60.68		1.07		7.87		86.33		39.74	1.92
	Tails 3	1.10	20.08	21.59	58.54	0.51	1.04	66.45	11.08	1.78	88.11	1.10	0.94
PAM	Tails 2	3.02	23.11	3.06	51.28	0.04	0.91	94.11	21.94	0.69	88.80	0.24	3.65
0.50	Slimes	0.71	23.81	11.19	50.09	8.08	1.12	26.32	22.07	0.60	89.40	11.22	0.24
	Tails 1	76.19	100.00	1.86	13.34	0.32	0.51	95.44	77.97	10.60	100.00	47.70	93.26
	Feed	100.00		13.34		0.51		77.97		100.00		100.00	100.00
	Concentrate	17.46		64.63		1.20		5.71		81.95		42.41	1.27
	Tails 4	0.44	17.90	41.93	64.08	0.99	1.19	36.48	6.46	1.33	83.28	0.87	0.20
Storah	Tails 3	0.71	18.61	8.32	61.95	0.45	1.17	85.04	9.46	0.43	83.71	0.65	0.77
	Tails 2	3.69	22.30	2.43	52.09	0.08	0.99	96.08	23.81	0.65	84.36	0.60	4.53
1.0	Slimes	0.71	23.02	12.02	50.85	10.39	1.28	21.04	23.72	0.62	84.98	14.96	0.19
	Tails 1	76.98	100.00	2.69	13.77	0.26	0.49	94.68	78.35	15.02	100.00	40.51	93.03
	Feed	100.00		13.77		0.49		78.35		100.00		100.00	100.00

Table 24. Complete Flowsheet Test Results Using Mosaic #1 Feed.

Descent		ProductMeight (%)Analysis (%)DistribuBPLMgOA.I.BPL	ion (%)										
(kg/T Food)	Product	weigi	n (%)	BI	PL	Mg	gO	A	.I.	BI	PL	MaO	ΔŢ
(Kg/1, 1'eeu)		Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	MgO	A.I.
	Concentrate	15.01		64.83		1.17		6.82		73.66		35.93	1.30
	Tails 4	1.01	16.02	39.22	63.21	0.74	1.14	42.36	9.06	3.00	76.67	1.53	0.54
CMC	Tails 3	0.80	16.82	3.98	60.38	0.34	1.10	90.96	12.98	0.24	76.91	0.56	0.93
	Tails 2	1.42	18.25	2.08	55.83	0.09	1.03	96.08	19.47	0.22	77.13	0.26	1.73
1.0	Slimes	0.48	18.73	18.70	54.87	10.30	1.26	13.14	19.31	0.68	77.82	10.17	0.08
	Tails 1	81.27	100.00	3.61	13.21	0.31	0.49	92.76	79.00	22.18	100.00	51.55	95.42
	Feed	100.00		13.21		0.49		79.00		100.00		100.00	100.00
	Concentrate	17.71		64.76		1.01		5.84		83.94		35.13	1.32
	Tails 4	0.64	18.35	48.64	64.20	0.99	1.01	28.55	6.63	2.27	86.21	1.24	0.23
Hongin #0	Tails 3	0.68	19.03	11.82	62.32	0.70	1.00	78.40	9.21	0.59	86.80	0.94	0.69
0.05	Tails 2	2.88	21.91	2.67	54.48	0.20	0.89	94.70	20.45	0.56	87.36	1.13	3.49
0.05	Slimes	0.47	22.38	17.28	53.69	8.83	1.06	21.96	20.48	0.60	87.96	8.19	0.13
	Tails 1	77.62	100.00	2.12	13.66	0.35	0.51	94.80	78.16	12.04	100.00	53.36	94.13
	Feed	100.00		13.66		0.51		78.16		100.00		100.00	100.00

 Table 24 (Cont.).
 Complete Flowsheet Test Results Using Mosaic #1 Feed.

Depressant (kg/T, Feed)	Product	Weight (%)		P_2O_5	Analysis (%)							Distribution (%)			
					BPL		MgO		A.I.		BPL		MaO	ΔŢ	
		Indiv.	Cum.		Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	MgO	A.I.	
None	Concentrate	14.63		29.70	64.89		1.11		6.99		87.63		58.20	1.23	
	Tails 4	0.82	15.45	21.53	47.04	63.94	0.68	1.09	33.18	8.39	3.57	91.20	2.01	0.33	
	Tails 3	1.01	16.46	8.56	18.70	61.16	0.36	1.04	72.64	12.33	1.75	92.95	1.30	0.88	
	Tails 2	6.30	22.77	1.30	2.84	45.02	0.09	0.78	95.05	35.23	1.65	94.60	2.03	7.18	
	Slimes	0.52	23.28	7.24	15.82	44.37	6.31	0.90	33.24	35.19	0.76	95.36	11.70	0.21	
	Tails 1	76.72	100.00	0.30	0.66	10.83	0.09	0.28	98.10	83.45	4.64	100.00	24.75	90.18	
	Feed	100.00		4.96	10.83		0.28		83.45		100.00		100.00	100.00	
PAM 0.5	Concentrate	13.23		29.55	64.57		0.97		7.31		81.29		38.53	1.16	
	Tails 4	1.51	14.74	19.23	42.02	62.26	0.56	0.93	40.61	10.71	6.02	87.30	2.53	0.73	
	Tails 3	0.66	15.39	5.50	12.02	60.12	0.33	0.90	81.14	13.71	0.75	88.05	0.65	0.64	
	Tails 2	2.82	18.21	1.31	2.86	51.27	0.14	0.78	94.82	26.26	0.77	88.82	1.18	3.19	
	Slimes	0.36	18.57	6.81	14.88	50.55	5.29	0.87	35.53	26.44	0.52	89.33	5.78	0.15	
	Tails 1	81.43	100.00	0.63	1.38	10.51	0.21	0.33	96.73	83.67	10.67	100.00	51.33	94.13	
	Feed	100.00		4.81	10.51		0.33		83.67		100.00		100.00	100.00	
Starch 1.0	Concentrate	13.16		29.75	65.00		0.94		6.01		79.86		45.13	0.95	
	Tails 4	1.49	14.65	28.19	61.60	64.66	0.78	0.92	12.09	6.63	8.55	88.41	4.23	0.22	
	Tails 3	0.58	15.22	13.37	29.21	63.32	0.46	0.91	55.82	8.49	1.57	89.98	0.97	0.38	
	Tails 2	5.54	20.76	1.29	2.82	47.18	0.06	0.68	95.30	31.64	1.46	91.44	1.21	6.32	
	Slimes	0.55	21.31	9.05	19.77	46.47	5.54	0.81	33.32	31.69	1.02	92.45	11.14	0.22	
	Tails 1	78.69	100.00	0.47	1.03	10.71	0.13	0.27	97.45	83.44	7.55	100.00	37.32	91.91	
	Feed	100.00		4.90	10.71		0.27		83.44		100.00		100.00	100.00	

 Table 25. Complete Flowsheet Test Results Using Mosaic #2 Feed.

Reagent (kg/T, Feed)	Product	Weight (%)				Analy	sis (%)	Distribution (%)					
				BPL		MgO		A.I.		BPL		MaO	ΛŢ
		Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	MgO	A.I.
CMC 1.0	Concentrate	12.63		65.35		0.79		6.60		74.32		39.99	1.00
	Tails 3	1.23	13.86	49.84	63.98	0.55	0.77	28.40	8.54	5.52	79.85	2.71	0.42
	Tails 2	2.78	16.65	4.68	54.06	0.11	0.66	92.22	22.52	1.17	81.02	1.23	3.07
	Slimes	0.37	17.02	21.02	53.35	6.43	0.78	20.55	22.48	0.70	81.72	9.52	0.09
	Tails 1	82.98	100.00	2.45	11.11	0.14	0.25	96.01	83.50	18.28	100.00	46.55	95.42
	Feed	100.00		11.11		0.25		83.50		100.00		100.00	100.00
Hengju #9 0.05	Concentrate	14.41		65.33		0.85		6.83		87.90		44.19	1.18
	Tails 4	0.62	15.02	42.96	64.41	0.58	0.84	37.34	8.08	2.48	90.38	1.29	0.28
	Tails 3	0.67	15.69	13.18	62.23	0.27	0.81	79.18	11.11	0.82	91.20	0.65	0.63
	Tails 2	3.21	18.90	3.19	52.20	0.08	0.69	93.88	25.17	0.96	92.16	0.93	3.61
	Slimes	0.44	19.35	18.33	51.42	5.78	0.81	32.53	25.34	0.76	92.92	9.28	0.17
	Tails 1	80.65	100.00	0.94	10.71	0.15	0.28	97.56	83.59	7.08	100.00	43.66	94.13
	Feed	100.00		10.71		0.28		83.59		100.00		100.00	100.00

 Table 25 (Cont.).
 Complete Flowsheet Test Results Using Mosaic #2 Feed.
EXPLORATORY FLOWSHEET DEVELOPMENT

The test results discussed above indicate that adding dolomite depressant alone in the fatty acid flotation step can lower the MgO content to some extent, but cannot meet the goal of the proposed research program. This limitation is mainly attributed to nonliberated dolomite in the coarser fraction of the flotation feed. Therefore, eight different approaches were tested to increase the chance of success.

FLOTATION FEED GRINDING FOLLOWED BY FLOTATION

Sizing analyses of the flotation feeds (Tables 8-10) show that a majority of the dolomite is concentrated in the small amount of +0.5 mm fraction. For example, the +0.5 mm fraction accounts for 8.62% of the CF feed and contains 1.46% MgO, or 28.28% of the total MgO; the corresponding numbers for the Mosaic feed #1 are 7.55%, 2.14% and 31.33%. Grinding the flotation feed naturally makes some sense. Figure 22 shows the processing flowsheet. The test results are shown in Table 26. These results are somewhat surprising because the finer the grinding, the higher the MgO content was in the final concentrate. Besides, phosphate loss was significant. This approach therefore did not prove to be viable.

ROUGHER CONCENTRATE GRINDING FOLLOWED BY FLOTATION

Figure 23 is a flowchart for this approach. The test results shown in Table 26 indicate a small reduction of MgO in the final concentrate, but with significant sacrifice of phosphate recovery.

CONCENTRATE GRINDING FOLLOWED BY FLOTATION

The concentrate from the double float process was ground, followed by a dolomite flotation step to further reduce MgO content using a 0.5 liter XFD-0.5 flotation machine. The flowsheet is shown in Figure 24. Results (Table 27) indicate that MgO was reduced substantially with appreciable loss of phosphate.

Figure 22. Flowsheet with Feed Grinding.

Crinding			Waigh	st (0/)				Ar	nalysis ((%)					Distribu	tion (%)	
Time	Produ	ct	weigi	lt (%)		BPL			MgO			A.I.		BI	PL	MgO	ΔI
Time			Indiv.	Cum.	Indiv	. (Cum.	Indiv	v. C	'um.	Ind	iv.	Cum.	Indiv.	Cum.	MgO	А.І.
	Concentr	ate	22.28		66.53			1.03	3		5.7	'4		86.84		53.93	1.73
	Tails 4		0.92	23.20	31.49	6	5.14	0.59) 1	.01	54.	71	7.69	1.70	88.55	1.28	0.68
	Tails 3		1.07	24.27	12.04	. 6	52.80	0.33	B 0).98	81.	59	10.95	0.75	89.30	0.83	1.18
2	Tails 2		7.47	31.74	2.67	4	8.65	0.14	4 0).78	95.4	40	30.82	1.17	90.47	2.46	9.62
5 min.	Slimes 2		2.12	33.85	31.81	4	7.60	5.61	l 1	.09	26.2	26	30.53	3.94	94.41	27.90	0.75
	Tails 1		64.28	98.13	0.63	1	6.84	0.09) ().43	98.	17	74.84	2.39	96.80	13.60	85.24
	Slimes 1		1.87	100.00	29.19	1	7.07	5.28	3 0).52	31.4	48	74.02	3.20	100.00	23.24	0.80
	Feed		100.00		17.07			0.52	2		74.	02		100.00		100.00	100.00
	Concentr	ate	19.58		66.42			1.15	5		5.1	0		76.03		41.77	1.35
	Tails 3		1.95	21.52	43.79	6	54.38	0.70) 1	.11	39.	20	8.18	4.98	81.02	2.53	1.03
T	Tails 2		3.31	24.84	3.04	5	6.19	0.03	3 0).97	95.	34	19.81	0.59	81.61	0.18	4.27
9 min.	Slimes 2		3.41	28.25	40.71	5	54.32	2.83	3 1	.19	30.	74	21.13	8.12	89.72	17.91	1.42
	Tails 1		68.10	96.35	1.01	1	6.64	0.11	1 0).43	97.	84	75.35	4.00	93.73	13.90	90.00
	Slimes 1		3.65	100.00	29.39	1	7.10	3.50) ().54	39.	30	74.03	6.27	100.00	23.71	1.94
	Feed		100.00		17.10)		0.54	1		74.	03		100.00		100.00	100.00
							Oper	ating (Conditio	ons							
				Conditi	oning		- 1						Re	agents, kg/	T Feed		
0 di		Ir	npeller		. I G	. 12. 1.		1	Times			F	E .1				
Operatio	on	Rota	tion Speed	Aerati	on S	0/	pH	((Min.)	Na ₂	CO_3	Fatty	Fuel	Na ₂ SiO ₃	H_2SO_4	Kerosene	Amine
			(rpm)	(L/IVII	II. <i>)</i>	%0						Aciu	Oli				
Grinding						60											
Phosphate Flor	tation		1600	1.2		30	8.8~9.	2	2.5	1.	0	1.5	0.6	1.0			
Deoiling			1600						5.0						8.0		
Quartz Flotatio	on		1600	1.2			7.4~7.	5	4.0	0.	5					0.3	1.0
	Т	otal Re	eagent Cor	sumption	, kg/T F	eed				1.	5	1.5	0.6	1.0	8.0	0.3	1.0

 Table 26. Double Float Testing Results with Feed Grinding.

Figure 23. Flowsheet for Rougher Concentrate Grinding.

Crinding			Waigh	+(0/)			Analys	sis (%	5)				Distribu	tion (%)	
Time	Prod	uct	weigh	ll (%)	B	PL	Mg	0		A.I.		BI	PL	MaQ	ΛТ
Time			Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cur	m. Inc	liv.	Cum.	Indiv.	Cum.	MgO	A.I.
	Concent	trate	20.69		65.72		0.99					81.09		41.26	0.00
	Tails 3		2.21	22.90	20.98	86.70	0.27	1.2	6 6.	75	6.75	2.76	83.85	1.20	0.78
a :	Tails 2		5.58	28.48	2.05	49.78	0.02	0.7	4 69	.66	14.18	0.68	84.53	0.22	20.37
3 min.	Slimes		4.09	32.57	47.17	49.45	3.82	1.1	.3 96	.81	24.56	11.51	96.05	31.50	20.76
	Tails 1		67.43	100.00	0.98	16.77	0.19	0.5	50 16	.45	19.09	3.95	100.00	25.81	58.10
	Feed		100.00		16.77		0.50		97	.21		100.00		100.00	100.00
	Concent	trate	17.22		66.18		0.97		5.	78		68.28		33.76	1.33
	Tails 3		3.01	20.23	44.44	110.63	0.52	1.4	9 37	.93	43.71	8.02	76.30	3.17	1.53
- .	Tails 2		6.12	26.35	2.47	48.89	0.02	0.7	0 96	.16	30.45	0.91	77.21	0.25	7.88
5 min. SI	Slimes		6.51	32.87	50.28	49.17	2.71	1.1	0 18	.05	28.00	19.63	96.84	35.69	1.57
	Tails 1		67.13	100.00	0.79	16.69	0.20	0.4	9 97	.62	74.74	3.16	100.00	27.14	87.69
	Feed		100.00		16.69		0.49		74	.74		100.00		100.00	100.00
						Ope	rating Cond	lition	S						
				Condition	ning						Re	eagents, kg/	T Feed		
Operatio	on	Im Rotati (1	peller on Speed rpm)	Aeration (L/Min.	n Solid) %	s pH	Time (Min.	s)	Na ₂ CO ₃	Fatty Acid	Fuel Oil	Na ₂ SiO ₃	H_2SO_4	Kerosene	Amine
Phosphate Flor	tation	1	600	1.2	27	8.8~9.	2 2.5		1.0	1.5	0.6	1.0			
Grinding					~ 60		Variab	ole							
Deoiling		1	600				5.0						8.0		
Quartz Flotatio	on	1	600	1.2		7.4~7.	5 4.0		0.5					0.3	1.0
	Total Reagent Consumption, kg/T Feed									1.5	0.6	1.0	8.0	0.3	1.0

 Table 27. Flotation Results with Rougher Concentrate Grinding.

Phosphate Concentrate

Figure 24. Flowsheet for Concentrate Grinding Followed by Dolomite Flotation.

Crinding						Anal	ysis (%)				Distribution (%)	
Time	Pro	oduct	Weig	ht (%)	BPL	Ν	/IgO	A.I.	BF	۶L	MgO	A.I.
	Concent	trate	91	.81	66.73	0).78	7.15	92.	58	76.76	92.93
5 min	Tails 2		3.	18	65.40	1	.33	5.86	3.1	14	4.53	2.64
5 mm.	Tails 1		5.	02	56.42	(*)	8.48	6.25	4.2	28	18.71	4.44
	Feed		100	0.00	66.17	C).93	7.06	100	.00	100.00	100.00
					С	peratin	g Conditio	ns				
				Conditioni	ıg				Reagents	s, kg/T Fe	eed	
Operatio	'n	Impel Rotation (rpm	ler Speed 1)	Aeration (L/Min.)	pH			Mixed Acid*			PA-64	
Dolomite Flota	ation I	2000	C	0.3	4.3~5.0			6.0			2.0	
Dolomite Flota	ation II	2000	0	0.3	4.1~4.7			2.0			2.0	
	Total F	Reagent Co	nsumpti	on, kg/T Fe	ed			8.0			4.0	

 Table 28. Test Results with Concentrate Grinding.

REAGENT ADDITION IN THE DEOILING STEP

In these tests the standard double float process was followed, but different reagents were added in the deoiling step, as is shown in Figure 25. Test results are shown in Table 29. It can be seen from Table 29 that addition of NaOH, Na₂CO₃, and HCl did not have a significant effect, while H_3PO_4 lowered MgO by a small amount. Increased use of H_2SO_4 had a more dramatic impact on MgO reduction, but phosphate loss was equally higher.

Phosphate Concentrate

Figure 25. Flowsheet for Testing Different Reagents in the Deoiling Step.

Reagent		Waigh	at(0/)			Analy	sis (%)				Dist	tribution (%	5)	
(kg/T Eood)	Product	weigi	n (%)	BI	PL	Mg	gO	A	.I.	BI	PL	MaO	A	.I.
(kg/1, 1 eeu)		Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	MgO	Indiv.	Cum.
	Concentrate	24.03		60.09		1.13		14.93		81.90		49.80	4.86	
	Tails 3	5.97	29.99	21.57	81.65	0.35	1.48	69.77	84.70	7.30	89.20	3.83	5.64	10.51
NaOH	Tails 2	2.27	32.26	46.21	51.99	0.59	0.95	36.23	26.57	5.94	95.14	2.45	1.11	11.62
5.0	Slimes	0.81	33.07	4.65	50.83	11.36	1.20	25.39	26.54	0.21	95.35	16.90	0.28	11.90
	Tails 1	66.93	100.00	1.22	17.63	0.22	0.55	97.10	73.76	4.65	100.00	27.01	88.10	100.00
	Feed	100.00		17.63		0.55		73.76		100.00		100.00	100.00	
	Concentrate	19.58		65.05		1.30		7.18		73.56		47.81	1.91	
	Tails 4	1.21	20.79	43.07	63.76	0.65	1.26	38.94	9.03	3.02	76.58	1.48	0.64	2.55
	Tails 3	4.85	25.64	25.52	56.53	0.37	1.09	63.84	19.40	7.15	83.73	3.37	4.21	6.76
Na_2CO_3	Tails 2	6.90	32.54	29.98	50.90	0.42	0.95	58.41	27.67	11.95	95.68	5.44	5.47	12.24
5.0	Slimes	0.95	33.49	5.35	49.61	10.16	1.21	27.92	27.68	0.29	95.97	18.16	0.36	12.60
	Tails 1	66.51	100.00	1.05	17.31	0.19	0.53	96.72	73.60	4.03	100.00	23.74	87.40	100.00
	Feed	100.00		17.31		0.53		73.60		100.00		100.00	100.00	
	Concentrate	24.13		65.70		1.13		6.60		93.83		55.35	2.13	
	Tails 4	0.53	24.66	13.98	64.59	0.43	1.11	78.76	8.15	0.44	94.27	0.46	0.56	2.69
HCI	Tails 3	2.25	26.91	5.55	59.66	0.16	1.04	91.68	15.13	0.74	95.00	0.73	2.76	5.45
	Tails 2	4.76	31.67	4.57	51.38	0.11	0.90	93.05	26.84	1.29	96.29	1.06	5.93	11.38
8.0	Slimes	0.92	32.58	8.94	50.19	11.00	1.18	26.72	26.83	0.49	96.77	20.50	0.33	11.71
	Tails 1	67.42	100.00	0.81	16.90	0.16	0.49	97.76	74.65	3.23	100.00	21.90	88.29	100.00
	Feed	100.00		16.90		0.49		74.65		100.00		100.00	100.00	

Table 29. Effect of Deoiling Agents on MgO Content in the Concentrate.

Descent			Wai	$h_{t}(0/)$			Analys	sis (%)					Dist	ributio	n (%)		
(leg/T Eage)	Pr	oduct	weig	giit (%)	В	PL	Mg	0	A	A.I.		BPL		Ma		Α	.I.
(kg/1, 1 eeu)			Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cun	n. Indi	v. Cu	ım.	Mg	J	Indiv.	Cum.
	Conce	entrate	23.28		67.76		1.02		5.45		90.7	/1		48.2	6	1.71	
	Tails	4	0.89	24.17	59.43	67.45	0.83	1.01	17.07	5.8	8 3.0	4 93	.76	1.50)	0.20	1.92
	Tails	3	0.84	25.01	15.91	65.71	0.51	1.00	76.22	8.2	5 0.7	7 94	.53	0.87	7	0.87	2.78
$H_3PO_4(P_2O_5)$	Tails	2	6.69	31.70	3.36	52.55	0.13	0.81	94.85	26.5	53 1.3	0 95	.82	1.77	7	8.56	11.34
8.0	Slime	es	0.99	32.69	10.97	51.30	10.77	1.11	25.56	26.5	50 0.6	2 96	.45	21.6	0	0.34	11.68
	Tails	1	67.31	100.00	0.92	17.39	0.19	0.49	97.35	74.1	9 3.5	5 100	0.00	25.9	9	88.32	100.00
	Feed		100.00		17.39		0.49		74.19		100.	00		100.0	00 1	00.00	
	Conce	entrate	20.54		66.86		0.79		6.07		83.3	35		37.6	2	1.67	
H_2SO_4	Tails	2	8.15	28.69	2.95	48.70	0.12	0.60	95.37	31.4	4 1.4	6 84	.81	2.27	7	10.44	12.11
16.0	Slime	es	4.16	32.85	41.45	47.78	2.84	0.88	12.56	29.0)5 10.4	7 95	.28	27.4	1	0.70	12.81
Times: 30'	Tails	1	67.15	100.00	1.16	16.48	0.21	0.43	96.72	74.4	4.7	2 100	00.0	32.7	0	87.19	100.00
	Feed		100.00		16.48		0.43		74.49		100.	00		100.0	00 1	00.00	
							Operating	Conditions									
			(Conditionin	ıg		1 0				Reage	ents, kg/T	Feed				
Operation	l	Impel Rotati Speed (1	ler on rpm)	Aeration (L/Min.)	Solids %	pH	Times (Min.)	Na ₂ CO ₃	Fatty Acid	Fuel Oil	Na ₂ SiO ₃	H ₂ SO ₄	Kero	sene	Amir	ie E F	Deoiling Reagent
Phosphate Flot	ation	1600	C	1.2	27	8.8~9.2	2.5	1.0	1.5	0.6	1.0						
Deoiling		1600	0				5.0									V	ariable
Quartz Flotatio	on	1600	0	1.2		7.4~7.5	4.0	0.5					0.	.3	1.0		
		Total Rea	gent Con	sumption, l	cg/T Feed	l		1.5	1.5	0.6	1.0		0.	.3	1.0		

Table 29 (Cont.). Effect of Deoiling Agents on MgO Content in the Concentrate.

DOLOMITE FLOTATION WITHOUT GRINDING

Both the rougher and cleaner concentrates generated using the Crago flowsheet were subject to dolomite flotation to compare performance of dolomite collectors USPA-31 and PA-64. Collector USPA-31 is a proprietary reagent produced in the FIPR lab, while PA-64 is a product made in China (Gruber and others 2001; Gu and others 1999).

A flowsheet for floating rougher concentrate is shown in Figure 26, with the results listed in Table 30. The corresponding flowsheet and test results for cleaner concentrate are shown in Figure 27 and Table 31.

As shown in Tables 30 and 31, in the flotation of the rougher concentrate dolomite removal was insignificant using either collector, while dolomite was reduced by a small margin by flotation of the cleaner concentrate.

Figure 26. Flowsheet for Direct Flotation of the Rougher Concentrate.

Figure 27. Flowsheet for Direct Flotation of the Cleaner Concentrate.

Dolomite Weight (%) Analysis (%) Distribution (%)															
Collector	Pre	oduct	weig	giit (%)	BI	PL	Ν	1gO	I	A.I.		В	PL	MgO	ΔĪ
Collector			Indiv.	Cum.	Indiv.	Cun	n. Indiv.	Cum.	Indiv.	Cur	n. In	div.	Cum.	MgO	A.I.
	Conce	entrate	23.54		66.66		1.10		6.53		92	.60		46.69	2.09
	Tails	3	9.35	32.89	3.30	48.6	5 0.20	1.30	94.14	100.	67 1	.82	94.43	3.37	11.97
PA-64	Slime	S	0.50	33.38	19.03	48.2	1 7.77	0.95	27.09	31.3	37 0	.56	94.98	6.95	0.18
2.0 kg/t	Tails	2	1.02	34.40	17.35	47.3	0 7.96	1.15	31.41	31.3	38 1	.04	96.02	14.60	0.43
	Tails	1	65.60	100.00	1.03	16.9	4 0.24	0.55	95.62	73.5	52 3	.98	100.00) 28.39	85.32
	Feed		100.00		16.94		0.55		73.52		10	0.00		100.00	100.00
	Conce	entrate	23.79		65.75		1.03		6.98		92	.81		46.09	2.23
	Tails	3	8.98	32.77	2.75	48.4	8 0.15	1.18	95.13	102.	11 1	.47	94.27	2.53	11.47
H_2SO_4	Slime	S	0.57	33.34	18.07	47.9	6 7.46	0.90	27.06	31.0)7 0	.61	94.88	7.97	0.21
16.0 Times: 30'	Tails	2	0.84	34.18	18.79	47.2	5 7.89	1.07	27.54	30.9	99 0	.94	95.82	12.45	0.31
1 mes. 50	Tails	1	65.82	100.00	1.07	16.8	5 0.25	0.53	97.14	74.5	53 4	.18	100.00) 30.95	85.79
	Feed		100.00		16.85		0.53		74.53		10	0.00		100.00	100.00
							Operatin	g Conditions							
			Co	nditioning							Reage	nts, kg	/T Feed		
Operation	1	Impel Rotati Speed (1	ler on rpm)	Aeration (L/Min.)	pH		Times (Min.)	Na ₂ CO ₃	Fatty Acid	Fuel Oil	Na ₂ SiO	, H	I ₂ SO ₄	Kerosene	Amine
Phosphate Flor	tation	160	0	1.2	8.8~9	.2	2.5	1.0	1.5	0.6	1.0				
Dolomite Flota	ation	160	0		4.5~5	.0	3.0						8.0		
Desliming		160	0												
Quartz Flotatio	on	160	0	1.2	7.4~7	.5	4.0	0.5						0.3	1.0
	Т	otal Reage	ent Consu	imption, kg	/T Feed			1.5	1.5	0.6	1.0		8.0	0.3	1.0

 Table 30. Results from Direct Flotation of the Rougher Concentrate.

Delemite			Waigh	(0/)			Analys	is (%)					D	istribution (%)	
Collector	Produ	uct	weigh	ll (%)	В	PL	Mg()		A.]	[.]	BPL	Ma		ΔI
Collector			Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	In	div.	Cum.	Indiv.	Cum	. Nige	,	А.І.
	Concent	rate	24.00		65.31		0.99		7	.72		94.56		47.2	2	2.47
	Tails 3		0.00	24.00	0.00	65.31	0.00	0.99	0	.00	7.72	0.00	94.56	5 0.00)	0.00
PA-64	Tails 2		8.90	32.90	2.84	48.41	0.21	0.78	94	4.64	31.23	1.52	96.08	3.71		11.24
2.0 kg/t	Slimes		1.05	33.95	13.81	47.35	9.71	1.05	25	5.02	31.04	0.87	96.95	5 20.2	0	0.35
	Tails 1		66.05	100.00	0.76	16.58	0.22	0.50	9'	7.44	74.90	3.05	100.0	0 28.8	7	85.93
	Feed		100.00		16.58		0.50		74	4.90		100.00		100.0)0	100.00
	Concent	rate	23.68		66.05		1.02		7	.09		93.62		48.8	7	2.23
	Tails 3		0.00	23.68	0.00	66.05	0.00	1.02	0	.00	7.09	0.00	93.62	2 0.00)	0.00
USPA-31	Tails 2		9.18	32.86	2.91	48.42	0.20	0.79	94	4.77	31.58	1.60	95.22	2 3.71		11.54
2.5 kg/t	Slimes		1.08	33.93	13.90	47.32	9.51	1.07	20	5.46	31.42	0.89	96.11	20.6	9	0.38
	Tails 1		66.07	100.00	0.98	16.71	0.20	0.49	9′	7.95	75.37	3.89	100.0	0 26.7	3	85.86
	Feed		100.00		16.71		0.49		7	5.37		100.00		100.0	00	100.00
							Operating C	Condition	is							
				Condition	ning							Reagent	s, kg/T Fe	ed		
Operatio	on	Im Rotati (1	peller on Speed rpm)	Aerat (L/Mi	ion in.)	рН	Times (Min.)	Na ₂	CO ₃	Fatty Acid	Fuel Oil	Na ₂ SiO ₃	H_2SO_4	Kerosene	Amine	Mixed Acid
Phosphate Flor	tation	1	600	1.2	,	8.8~9.2	2.5	1.	0	1.5	0.6	1.0				
Desliming		1	1600										8.0			
Quartz Flotatio	on	1	600	1.2		7.4~7.5	4.0	0.	5					0.3	1.0	
Dolomite Flota	ation	1	.600			4.5~5.0	3.0									5.0
	T	otal Re	agent Cons	sumption,	kg/T Fee	d		1.	5	1.5	0.6	1.0	8.0	0.3	1.0	5.0

Table 31. Results from Direct Flotation of the Cleaner Concentrate.

DOLOMITE FLOTATION WITH GRINDING

Since dolomite flotation without grinding did not produce satisfactory results, further experiments were conducted with the rougher concentrate and cleaner concentrate ground to a degree. Again, comparative flotation tests were conducted with dolomite collectors USPA-31 and PA-64. In these experiments, the effects of grinding time and fineness were evaluated. The test flowsheet is shown in Figure 28. Comparison results for the two dolomite collectors are shown in Table 32, and the effect of grinding time is reported in Table 33.

The results shown in Table 32 show that for the 7-minute grinding feed, both collectors were somewhat effective in removing dolomite, with PA-64 being a little better. Grinding-flotation tests (Table 33) indicated that the finer the flotation feed, the lower the dolomite in the final concentrate, with the lowest achievable MgO content being around 0.7%.

Phosphate Concentrate

Figure 28. Flowsheet for Dolomite Flotation with Grinding.

Dolomite Weight (%) Analysis (%) Distribution (%)																
Collector	Prod	uct	weig	,nt (70)	BP	Ľ	MgC)		A.I.		BPL			0	ΑI
concetor			Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cun	n. Indi	v.	Cum	l. 1916	0	11.1.
	Concent	trate	18.85		67.91		0.77		6.17		75.	38		27.	76	1.56
	Tails 4		1.27	20.12	63.32	67.62	1.69	0.83	6.08	6.10	5 4.7	4	80.12	2 4.1	1	0.10
	Tails 3		3.65	23.77	62.99	66.91	1.98	1.01	6.18	6.1	7 13.	55	93.6	7 13.	84	0.30
PA-04	Tails 2		8.48	32.26	3.80	50.32	0.29	0.82	92.57	28.8	8 1.9	0	95.5	7 4.7	0	10.54
2.0 ± 2.0	Slimes		0.98	33.23	14.25	49.26	10.83	1.11	25.12	28.7	7 0.8	2	96.3	9 20.1	20	0.33
	Tails 1		66.77	100.00	0.92	16.98	0.23	0.52	97.22	74.4	7 3.6	1	100.0	00 29.	38	87.16
	Feed		100.00		16.98		0.52		74.47		100.	00		100	.00	100.00
	Concent	trate	20.15		67.04		0.89		7.06		80.4	8		34.	20	1.90
	Tails 4		1.27	21.42	61.38	66.70	2.23	0.97	6.25	7.0	1 4.6	4	85.12	2 5.4	0	0.11
	Tails 3		2.63	24.05	61.55	66.14	2.04	1.09	6.76	6.98	3 9.6	3	94.7	6 10.	22	0.24
USPA-31	Tails 2		8.31	32.36	2.88	49.89	0.24	0.87	94.40	29.4	4 1.4	3	96.1	8 3.8	0	10.49
2.0 + 2.0	Slimes		0.94	33.30	13.90	48.88	10.29	1.13	24.28	29.2	9 0.7	8	96.9	6 18.	39	0.30
	Tails 1		66.70	100.00	0.76	16.78	0.22	0.52	97.54	74.8	2 3.0	4	100.0	0 27.	98	86.96
	Feed		100.00		16.78		0.52		74.82		100.	00		100	.00	100.00
							Operati	ing Condi	tions							
				Condition	ing						Reage	nts, kg	/T Fe	ed		
Operatio	on	Impo Rota Speed	eller ation (rpm)	Aeration (L/Min.)	Solids %	рН	Times (Min.)	Na ₂ CO	⁹ Fatt Aci	y Fuel 1 Oil	Na ₂ SiO ₃	H_2S	SO_4	Kerosene	Amine	Mixed Acid
Phosphate Flor	tation	16	00	1.2	27	8.8~9.2	2.5	1.0	1.5	0.6	1.0					
Desliming		16	500									8.	.0			
Quartz Flotatio	on	16	00	1.2		7.4~7.5	4.0	0.5						0.3	1.0	
Grinding		16	00				7.0									
Dolomite Flota	ation	20	00			4.5~5.0	7.0+6.0									6.0+2.0
	T	otal Rea	agent Cor	sumption, l	kg/T Feed			1.5	1.5	0.6	1.0	8.	.0	0.3	1.0	8.0

 Table 32. Dolomite Collector Comparison with Concentrate Grinding.

Grinding		Woigh	at (0%)			Analy	sis (%)				Distribut	ion (%)	
Time	Product	weigi	II (70)	BI	PL	Mg	gO	A	.I.	BI	PL	MaO	ΔI
Time		Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	MgO	A.I.
	Concentrate	20.00		66.62		0.88		6.96		79.29		36.11	1.86
	Tails 4	1.08	21.08	62.32	66.40	2.00	0.94	6.68	6.95	4.00	83.29	4.43	0.10
5 min.	Tails 3	2.93	24.01	61.31	65.78	2.12	1.08	7.24	6.98	10.68	93.97	12.73	0.28
-200 mesh	Tails 2	7.86	31.87	5.05	50.80	0.25	0.88	93.54	28.33	2.36	96.33	4.03	9.83
Grinding Time C 5 min. T -200 mesh T 19.69% S T F -200 mesh T 5.00 mesh T 7.00 mesh T 7.00 mesh T 30.91% S	Slimes	1.00	32.88	13.26	49.65	9.36	1.14	24.98	28.23	0.79	97.12	19.29	0.34
	Tails 1	67.12	100.00	0.72	16.81	0.17	0.49	97.67	74.84	2.88	100.00	23.41	87.60
	Feed	100.00		16.81		0.49		74.84		100.00		100.00	100.00
	Concentrate	18.85		67.91		0.77		6.17		75.38		27.76	1.56
	Tails 4	1.27	20.12	63.32	67.62	1.69	0.83	6.08	6.16	4.74	80.12	4.11	0.10
7 min.	Tails 3	3.65	23.77	62.99	66.91	1.98	1.01	6.18	6.17	13.55	93.67	13.84	0.30
-200 mesh	Tails 2	8.48	32.26	3.80	50.32	0.29	0.82	92.57	28.88	1.90	95.57	4.70	10.54
30.91%	Slimes	0.98	33.23	14.25	49.26	10.83	1.11	25.12	28.77	0.82	96.39	20.20	0.33
	Tails 1	66.77	100.00	0.92	16.98	0.23	0.52	97.22	74.47	3.61	100.00	29.38	87.16
	Feed	100.00		16.98		0.52		74.47		100.00		100.00	100.00

 Table 33. Concentrate Flotation Results with Varying Grinding Time (Fineness).

Crindina			Waig	ht(0/)			Analys	is (%)					Distribution	(%)	
Time	Prod	uct	weig	III (%)	BP	L	MgO)	А	.I.		BPL	M	10	ΔŢ
TIME			Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum	. Indiv	. Cur	n.	30	A.I.
	Concent	trate	16.06		68.26		0.72		5.56		65.18	3	24.	.32	1.20
	Tails 4		1.77	17.83	65.51	67.99	1.22	0.77	5.99	5.60	6.89	72.0)7 4.:	54	0.14
9 min.	Tails 3		5.65	23.49	63.32	66.86	1.73	1.00	5.75	5.64	21.28	93.3	35 20.	.56	0.44
-200 mesh	Tails 2		8.41	31.89	3.69	50.21	0.21	0.79	93.32	28.75	5 1.85	95.	19 3.'	71	10.52
45.22%	Slimes		1.02	32.91	14.62	49.11	8.70	1.04	22.99	28.57	0.89	96.0)8 18.	.66	0.31
	Tails 1		67.09	100.00	0.98	16.82	0.20	0.48	97.09	74.54	4 3.92	100.	00 28.	.21	87.38
	Feed		100.00		16.82		0.48		74.54		100.0	3.92 100.00 28.21 87 100.00 100.00 10 59.24 20.53 1 7.54 66.79 3.96 0 27.23 94.02 23.27 0 1.64 95.65 3.63 10 0.80 96.46 18.59 0	100.00		
	Concent	trate	14.84		67.65		0.71		6.24		59.24	ŀ	20.	.53	1.25
	Tails 4		1.91	16.75	66.73	67.54	1.06	0.75	6.19	6.23	7.54	66.7	79 3.9	96	0.16
11 min.	Tails 3		7.19	23.94	64.15	66.52	1.66	1.02	5.99	6.16	27.23	94.0)2 23.	.27	0.58
-200 mesh	Tails 2		8.09	32.03	3.43	50.59	0.23	0.82	93.64	28.25	5 1.64	95.0	55 3.0	63	10.19
58.88%	Slimes		0.97	33.00	14.03	49.52	9.84	1.09	24.28	28.13	3 0.80	96.4	46 18.	.59	0.32
	Tails 1		67.00	100.00	0.90	16.94	0.23	0.51	97.10	74.34	4 3.54	100.	00 30.	.03	87.51
	Feed		100.00		16.94		0.51		74.34		100.0	0	100	0.00	100.00
						(Operating C	Conditions							
				Condition	ing						Reagen	ts, kg/T F	eed		
Operatio	'n	Impo Rota Speed	eller tion (rpm)	Aeration (L/Min.)	Solids %	pH	Times (Min.)	Na ₂ CC	P ₃ Fatty Acid	Fuel Oil	Na ₂ SiO ₃	H_2SO_4	Kerosene	Amine	Mixed Acid
Phosphate Flot	ation	16	00	1.2	27	8.8~9.2	2.5	1.0	1.5	0.6	1.0				
Desliming		16	00									8.0			
Quartz Flotatio	on	16	00	1.2		7.4~7.5	4.0	0.5					0.3	1.0	
Dolomite Flota	ation	20	00			4.5~5.0	7.0+6.0								6.0+2.0
	Т	otal Rea	agent Con	sumption, l	kg/T Feed			1.5	1.5	0.6	1.0	8.0	0.3	1.0	8.0

 Table 33 (Cont.).
 Concentrate Flotation Results with Varying Grinding Time (Fineness).

DOLOMITE FLOTATION WITH PHOSPHATE DEPRESSANTS

In these experiments, the cleaner concentrate from the Crago flowsheet was ground at 60% solids for 9 minutes to achieve a feed of 45.22% passing 200 mesh. Flotation was conducted at 30% solids with two stages of collector addition and two stages of flotation. The flotation flowsheet is shown in Figure 29, and test conditions and results reported in Tables 34 and 35.

Phosphate depressants evaluated included acidic, neutral and alkaline reagents (Zhang and others 2002). Table 35 shows the neutral and alkaline depressants had little effect, while the strongly acidic depressants performed better. Phosphoric acid gave the highest BPL concentrate and recovery.

Figure 29. Flowsheet for Dolomite Flotation with Phosphate Depressants.

					Ope	rating Cond	itions							
		Condition	ing						R	eagents, k	g/T Feed	l		
Operation	Impeller Rotation Speed (rpm)	Aeration (L/Min.)	Solids %	pН	Times (Min.)	Na ₂ CO ₃	Fatty Acid	Fuel Oil	Na ₂ SiO ₃	H_2SO_4	Kero -sene	Amine	Phosphate Depressant	USPA-31
Phosphate Flotation	1600	1.2	26.87	8.8~9.2	2.5	1.0	1.5	0.6	1.0					
Deoiling	1600			3.4~4.1	5.0					8.0				
Quartz Flotation	1600	1.2		7.4~7.5	4.0	0.5					0.3	1.0	ļ	
Dolomite Flotation	2000	0.3	~30		7.0+6.0								Variable	2.0+2.0
]	otal Reagent Co	nsumption, l	kg/T Feed			1.5	1.5	0.6	1.0	8.0	0.3	1.0		4.0

Table 34. Experimental Conditions for Dolomite Flotation with Phosphate Depressants.

Denneggent		Waigh	at(0/)			Analy	sis (%)				Distribut	ion (%)	
(kg/T Eood)	Product	weigi	II (%)	BI	PL	Mg	gO	A	.I.	BI	PL	MaO	ΔŢ
(kg/1, 1 eeu)		Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	MgO	A.I.
	Concentrate	12.20		65.20		0.73		8.68		47.45		16.51	1.43
	Tails 4	4.07	16.27	65.51	65.28	0.91	0.78	6.04	8.02	15.92	63.37	6.87	0.33
	Tails 3	7.91	24.18	63.65	64.74	1.38	0.97	6.53	7.53	30.04	93.40	20.24	0.70
Blank	Tails 2	7.77	31.94	4.24	50.03	0.18	0.78	92.78	28.26	1.96	95.37	2.59	9.73
	Slimes	1.81	33.75	14.16	48.12	9.09	1.22	26.67	28.17	1.52	96.89	30.43	0.65
	Tails 1	66.25	100.00	0.79	16.76	0.19	0.54	97.42	74.05	3.11	100.00	23.35	87.16
	Feed	100.00		16.76		0.54		74.05		100.00		100.00	100.00
	Concentrate	10.08		64.54		0.73		9.31		38.89		14.03	1.27
	Tails 4	5.57	15.66	59.00	62.57	0.82	0.76	15.43	11.49	19.64	58.53	8.71	1.17
I NaOH 2.0	Tails 3	9.52	25.17	62.43	62.52	1.37	0.99	7.38	9.93	35.51	94.04	24.86	0.95
	Tails 2	7.44	32.61	3.63	49.09	0.22	0.82	93.60	29.01	1.61	95.65	3.12	9.45
II NaOH 0.5	Slimes	1.23	33.84	14.53	47.83	8.67	1.10	24.14	28.84	1.07	96.72	20.28	0.40
	Tails 1	66.16	100.00	0.83	16.74	0.23	0.52	96.64	73.70	3.28	100.00	29.00	86.76
	Feed	100.00		16.74		0.52		73.70		100.00		100.00	100.00
	Concentrate	12.56		64.50		0.70		9.16		48.17		16.99	1.55
	Tails 4	4.58	17.14	66.12	64.93	0.92	0.76	5.52	8.19	18.00	66.17	8.14	0.34
I Starch 2.0	Tails 3	7.35	24.48	62.38	64.17	1.48	0.98	6.54	7.69	27.25	93.42	21.01	0.65
	Tails 2	8.18	32.66	3.95	49.09	0.20	0.78	92.96	29.04	1.92	95.34	3.16	10.27
II Starch 2.0	Slimes	1.10	33.77	14.57	47.96	9.37	1.06	23.67	28.87	0.96	96.30	20.00	0.35
	Tails 1	66.23	100.00	0.94	16.82	0.24	0.52	97.07	74.04	3.70	100.00	30.71	86.83
	Feed	100.00		16.82		0.52		74.04		100.00		100.00	100.00

 Table 35. Dolomite Flotation Results with Phosphate Depressants.

Depressant (kg/T, Feed)		Weight (%)				Analy	sis (%)			Distribution (%)			
	Product	weigi	II (%)	BF	PL	Mg	0	A	.I.	BI	PL	MaO	АТ
		Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	MgO	A.I.
I Triethyl	Concentrate	8.50		64.20		0.69		10.31		33.02		11.57	1.18
	Tails 4	5.70	14.21	66.36	65.06	0.93	0.79	5.36	8.32	22.90	55.92	10.47	0.41
phosphate	Tails 3	10.00	24.21	62.60	64.05	1.30	1.00	6.60	7.61	37.89	93.82	25.66	0.89
2.0 II Triothyl	Tails 2	8.03	32.24	3.91	49.07	0.20	0.80	93.06	28.89	1.90	95.72	3.17	10.05
nhosphate	Slimes	1.09	33.33	15.45	47.97	9.36	1.08	23.60	28.72	1.02	96.74	20.20	0.35
0.5	Tails 1	66.67	100.00	0.81	16.53	0.22	0.51	97.21	74.38	3.26	100.00	28.94	87.13
0.0	Feed	100.00		16.53		0.51		74.38		100.00		100.00	100.00
I Sodium fluosilicate	Concentrate	13.82		65.00		0.70		8.14		54.12		18.52	1.51
	Tails 4	3.66	17.47	64.52	64.90	1.08	0.78	5.98	7.69	14.21	68.33	7.56	0.29
	Tails 3	6.61	24.08	62.95	64.37	1.55	0.99	6.28	7.30	25.05	93.38	19.60	0.56
2.0 II Sodium	Tails 2	7.98	32.06	4.59	49.49	0.25	0.81	92.33	28.47	2.21	95.59	3.82	9.90
fluosilicato	Slimes	1.15	33.21	15.45	48.31	8.98	1.09	24.35	28.33	1.07	96.66	19.81	0.38
	Tails 1	66.79	100.00	0.83	16.60	0.24	0.52	97.34	74.42	3.34	100.00	30.69	87.36
0.5	Feed	100.00		16.60		0.52		74.42		100.00		100.00	100.00
	Concentrate	11.67		65.77		0.68		6.82		45.65		15.28	1.08
I Dania anid	Tails 4	3.99	15.66	65.64	65.74	0.97	0.75	4.61	6.26	15.59	61.24	7.46	0.25
	Tails 3	8.49	24.15	63.50	64.95	1.45	1.00	5.32	5.93	32.06	93.30	23.70	0.61
2.0 II Porio soid	Tails 2	8.45	32.60	3.91	49.13	0.26	0.81	92.50	28.37	1.97	95.27	4.23	10.61
II BOTIC acid	Slimes	1.05	33.65	14.99	48.06	9.22	1.07	22.59	28.19	0.94	96.21	18.67	0.32
0.5	Tails 1	66.35	100.00	0.96	16.81	0.24	0.52	96.75	73.68	3.79	100.00	30.66	87.13
	Feed	100.00		16.81		0.52		73.68		100.00		100.00	100.00

 Table 35 (Cont.).
 Dolomite Flotation Results with Phosphate Depressants.

Demmanant		Weight (%)		Analysis (%)							Distribution (%)			
Depressant	Product	weigi	II (%)	BI	PL	Mg	0	A	.I.	BI	PL	MaO	A T	
(kg/1, reeu)		Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	MgO	A.1.	
	Concentrate	13.89		65.22		0.67		6.79		54.79		18.93	1.28	
	Tails 4	3.02	16.91	64.33	65.06	1.19	0.76	4.45	6.37	11.75	66.54	7.31	0.18	
I Tartaric acid	Tails 3	7.20	24.11	62.88	64.41	1.44	0.97	5.44	6.09	27.37	93.91	21.08	0.53	
2.0 II Tartaria agid	Tails 2	9.07	33.18	3.89	47.86	0.22	0.76	92.88	29.82	2.13	96.04	4.06	11.45	
	Slimes	1.01	34.18	15.03	46.90	8.70	1.00	23.04	29.62	0.92	96.96	17.82	0.32	
0.0	Tails 1	65.82	100.00	0.76	16.54	0.23	0.49	96.40	73.57	3.04	100.00	30.80	86.24	
	Feed	100.00		16.54		0.49		73.57		100.00		100.00	100.00	
	Concentrate	16.02		64.63		0.72		8.26		62.48		21.92	1.79	
	Tails 4	2.34	18.36	63.23	64.45	1.60	0.83	5.25	7.88	8.93	71.42	7.12	0.17	
I HCl 6.0	Tails 3	5.91	24.28	63.41	64.20	1.53	1.00	5.85	7.38	22.63	94.04	17.19	0.47	
	Tails 2	8.74	33.02	4.02	48.27	0.28	0.81	91.90	29.76	2.12	96.16	4.65	10.87	
II HC1 2.0	Slimes	1.24	34.26	14.16	47.03	9.16	1.11	22.40	29.49	1.06	97.23	21.65	0.38	
	Tails 1	65.74	100.00	0.70	16.57	0.22	0.53	97.05	73.90	2.77	100.00	27.48	86.33	
	Feed	100.00		16.57		0.53		73.90		100.00		100.00	100.00	
	Concentrate	17.90		67.52		0.71		5.27		71.82		25.25	1.27	
I Na	Tails 4	2.96	20.86	62.93	66.86	1.39	0.81	6.07	5.38	11.08	82.91	8.18	0.24	
	Tails 3	2.30	23.16	60.28	66.21	1.99	0.92	6.30	5.47	8.23	91.14	9.09	0.20	
2.0 U No	Tails 2	8.19	31.35	5.13	50.26	0.23	0.74	91.14	27.85	2.50	93.64	3.74	10.07	
II Na	Slimes	1.25	32.60	14.99	48.91	9.27	1.07	23.43	27.68	1.11	94.75	22.94	0.39	
	Tails 1	67.40	100.00	1.31	16.83	0.23	0.50	96.51	74.07	5.25	100.00	30.80	87.82	
0.5	Feed	100.00		16.83		0.50		74.07		100.00		100.00	100.00	

 Table 35 (Cont.).
 Dolomite Flotation Results with Phosphate Depressants.

Demmanant		Weight (%)				Analy	sis (%)			Distribution (%)			
(leg/T Eagl)	Product	weigi	III (%)	BI	PL	Mg	gO	A.	.I.	BI	PL	MaO	ΔŢ
(kg/1, reeu)		Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	MgO	A.I.
	Concentrate	13.68		66.36		0.67		7.03		54.21		18.76	1.29
	Tails 4	3.18	16.87	64.89	66.08	1.21	0.77	5.66	6.77	12.34	66.55	7.88	0.24
$1 \text{ KH}_2 \text{PO}_4$	Tails 3	7.14	24.01	64.06	65.48	1.41	0.96	6.24	6.61	27.31	93.86	20.60	0.60
	Tails 2	8.68	32.69	4.11	49.18	0.24	0.77	92.53	29.43	0.98	95.99	4.26	10.78
0.5	Slimes	1.06	33.75	15.60	48.13	9.26	1.04	24.36	29.27	0.98	96.97	20.03	0.35
0.5	Tails 1	66.25	100.00	0.76	16.75	0.21	0.49	97.63	74.56	3.03	100.00	28.47	86.75
	Feed	100.00		16.75		0.49		74.56		100.00		100.00	100.00
	Concentrate	18.86		67.69		0.77		6.52		74.45		28.30	1.66
	Tails 4	1.44	20.30	63.32	67.38	1.83	0.85	6.26	6.50	5.31	79.76	5.13	0.12
I Phos. Acid	Tails 3	3.87	24.17	62.16	66.55	2.15	1.05	5.87	6.40	14.02	93.78	16.20	0.31
0.U	Tails 2	8.75	32.92	4.20	49.97	0.26	0.84	92.44	29.27	2.14	95.92	4.43	10.90
$\frac{11}{20}$ Phos. Actu	Slimes	1.10	34.02	15.10	48.85	8.82	1.10	25.08	29.13	0.97	96.89	18.93	0.37
5.0	Tails 1	65.98	100.00	0.81	17.15	0.21	0.51	97.44	74.20	3.11	100.00	27.00	86.64
	Feed	100.00		17.15		0.51		74.20		100.00		100.00	100.00
	Concentrate	19.04		65.35		0.72		7.47		74.53		27.78	1.93
	Tails 4	1.50	20.54	61.62	65.08	1.77	0.80	6.32	7.39	5.52	80.06	5.37	0.13
I Sulfuric acid	Tails 3	3.72	24.26	61.68	64.56	1.61	0.92	5.83	7.15	13.75	93.81	12.14	0.29
8.0 U Sulfania ani 4	Tails 2	8.11	32.37	3.19	49.18	0.20	0.74	93.75	28.85	1.55	95.36	3.29	10.31
	Slimes	1.17	33.54	14.09	47.96	8.64	1.02	25.74	28.75	0.99	96.35	20.45	0.41
5.0	Tails 1	66.46	100.00	0.92	16.69	0.23	0.49	96.56	73.82	3.65	100.00	30.97	86.94
	Feed	100.00		16.69		0.49		73.82		100.00		100.00	100.00

 Table 35 (Cont.).
 Dolomite Flotation Results with Phosphate Depressants.

REDUCING MgO CONTENT BY SCRUBBING

Tables 36 and 37 show sizing analysis of a rougher concentrate and a final concentrate from floating the CF feed. In the rougher concentrate, the MgO content in the -0.16 mm fraction is 2.1%, about two times the content in the other size fractions. In the final concentrate, the variation in the MgO content in the different size fractions is less dramatic. Therefore, it was first decided to conduct scrubbing and desliming tests on the rougher concentrate to determine how much dolomite could be removed by this simple technique.

DIRECT SCRUBBING OF ROUGHER CONCENTRATE

The processing flowsheet is shown in Figure 30, and the test results are shown in Table 38. After acid scrubbing, the rougher concentrate was scrubbed and deslimed three times, which resulted in appreciable MgO reduction in the final concentrate. Dolomite in the slimes accounts for 28.32% of the total dolomite in the feed.

Sieve Erection	\mathbf{W}		Anal	ysis (%)	Distribution (%)				
Sieve Fraction	Wt. (%)	P_2O_5	BPL	MgO	A.I.	BPL	MgO	A.I.	
+0.5 mm	13.50	28.79	62.91	1.19	8.25	17.40	13.60	3.96	
-0.5 + 0.3 mm	22.08	26.94	58.86	1.19	14.18	26.63	22.25	11.13	
-0.3 + 0.16 mm	50.00	21.50	46.98	0.91	32.88	48.13	38.52	58.44	
-0.16 mm	14.42	12.13	26.50	2.10	51.64	7.83	25.63	26.47	
Total	100.00	22.33	48.80	1.18	28.13	100.00	100.00	100.00	

 Table 36. Sizing Analysis of the Rougher Concentrate from CF Feed.

Table 37. Sizing Analyses of the Final Concentrate from CF Feed.

Sieve Frection	\mathbf{W}_{t} (0/)		Anal	ysis (%)	Distribution (%)				
Sieve Flaction	vv t. (%)	P_2O_5	BPL	MgO	A.I.	BPL	MgO	A.I.	
+0.5 mm	17.62	29.31	64.04	1.00	7.79	17.76	19.17	13.66	
-0.5 + 0.3 mm	26.42	28.92	63.19	0.91	9.98	26.29	26.16	26.25	
-0.3 + 0.16 mm	47.15	29.23	63.87	0.86	10.38	47.42	44.13	48.72	
-0.16 mm	8.81	28.13	61.46	1.10	12.96	8.52	10.54	11.36	
Total	100.00	29.07	63.51	0.92	10.05	100.00	100.00	100.00	

Figure 30. Scrubbing Flowsheet for the Rougher Concentrate of CF Feed.

	W/-	=1+(0/)	Analysis (%)							Distribution (%)				
Product	we	ignt (%)	BP	L	Mg	gO	A.I	•		BPL	м	-0	АТ	
	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Indiv. Cum.		Cum.	Indiv	v. Cum	. M	gO	A.I.	
Concentrate	22.69		65.42		0.94		7.11		86.6	9	41	.14	2.19	
Tails 4	0.90	23.59	58.95	65.17	0.76	0.93	15.82	7.44	3.10	89.7) 1.	32	0.19	
Tails 3	1.00	24.59	44.38	64.33	0.61	0.92	35.72	8.59	2.59	92.3	3 1.	18	0.48	
Tails 2	7.21	31.80	3.26	50.48	0.08	0.73	94.52	28.07	1.37	93.7	5 1.	11	9.24	
Slimes 4	0.13	31.93	38.74	50.43	5.80	0.75	12.29	28.01	0.29	94.04	4 1.	45	0.02	
Slimes 3	0.19	32.12	31.94	50.32	7.25	0.79	14.84	27.93	0.35	94.40) 2.	66	0.04	
Slimes 2	0.87	32.99	19.03	49.50	9.52	1.02	19.18	27.70	0.97	95.3	7 15	.98	0.23	
Slimes 1	0.52	33.51	4.50	48.80	8.21	1.13	34.14	27.80	0.14	95.5) 8.	23	0.24	
Tails 1	66.49	100.00	1.16	17.12	0.21	0.52	96.92	73.76	4.50) 100.0	0 26	.93	87.37	
Feed	100.00)	17.12		0.52		73.76	73.76 100.00		100	0.00	100.00		
					Opera	ating Cond	itions							
			Conditio	ning			Reagents, kg/T Feed							
		Impeller				Times								
Operation	ı	Rotation	Aeration	Solids	лU	(Min.)	No CO	Fatty	Fuel	No SiO	4 50	Kero-	Amino	
		Speed	(L/Min.)	%	pm	(141111.)	1 v a ₂ CO ₃	Acid	Oil	11025103	112504	sene	Amme	
		(rpm)												
Phosphate Flor	tation	1600	1.2	27	8.8~9.2	2.5	1.0	1.5	0.6	1.0				
Deoiling		1600				5.0					8.0			
Scrubbing 1600		1600		~60		10*3								
Quartz Flotatio	on	1600	1.2		7.4~7.5	4.0	0.5					0.3	1.0	
Total Reagent Consumption, kg/T Feed							1.5	1.5	0.6	1.0	8.0	0.3	1.0	

Table 38. Flotation Results with Rougher Concentrate Scrubbed.

SCRUBBING WITH HARD MEDIA

Encouraged by the above scrubbing test, we designed more scrubbing experiments to study the effect of scrubbing media (steel balls and quartz granules) on dolomite removal. The diameter of the steel balls used was 0.8 mm. The scrubber was made of stainless steel with double stainless steel impellers, as is shown in Photo 1. This type of scrubber can handle high-solids scrubbing, thus requiring a large sample load of 800 grams. When quartz granules (ranging from 1.25 to 2 mm) were used as grinding media, a single-impeller glass scrubber was used, as is shown in Photo 2. A smaller sample, 200 grams, was used in this case.

Flowsheets for scrubbing tests with steel balls on the original feed, rougher concentrate and final concentrate are shown in Figures 31, 32 and 33, respectively, with the corresponding test results summarized in Tables 39-41. Scrubbing the final concentrate resulted in the highest MgO reduction and the lowest loss of phosphate.

Flowsheets for scrubbing tests with quartz granules on the rougher concentrate and final concentrate are shown in Figures 34 and 35, respectively, with the corresponding test results summarized in Tables 42 and 43. Again, the best results were achieved by scrubbing the final concentrate.

Photo 1. Steel Scrubber with Steel Balls and Double Impellers.

Photo 2. Glass Scrubber with Quartz Granules and Single Impeller.

Figure 31. Feed Scrubbing Using the Steel Scrubber.

* Diameter of steel balls is 0.8mm.

Figure 32. Rougher Concentrate Scrubbing using the Steel Scrubber.

Figure 33. Final Concentrate Scrubbing using the Steel Scrubber.
			Waia	$h_{t}(0/)$			Analys	sis (%)					Dist	ribution	n (%)		
Process	Pr	oduct	weig	III (%)	В	PL	Mg	0	A	A.I.		BPL		Ma	、	Α.	I.
			Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cun	n. Ind	v. Cu	ım.	MgC	Ind	iv.	Cum.
	Conce	entrate	19.37		68.59		0.86		2.90		78.	15		34.0	7 0.'	76	
	Tails	4	0.58	19.95	56.42	68.23	0.95	0.86	17.37	3.3	2 1.9	2 80	.07	1.13	0.	14	0.90
	Tails	3	1.00	20.95	25.76	66.21	0.42	0.84	62.55	6.1	5 1.5	2 81	.59	0.86	0.8	35	1.75
	Tails	2	13.93	34.88	1.53	40.38	0.01	0.51	97.23	42.5	52 1.2	5 82	.84	0.28	18.	38	20.12
Feed	Slime	es 4	0.60	35.48	55.72	40.64	1.24	0.52	18.36	42.1	1 1.9	7 84	.81	1.52	0.	15	20.27
Scrubbing	Tails	1	57.00	92.48	0.46	15.87	0.02	0.21	98.67	76.9	97 1.5	4 86	.35	2.33	76.	31	96.58
	Slime	es 3	1.78	94.26	41.60	16.36	1.45	0.24	34.20	76.1	6 4.3	6 90	.70	5.28	0.5	33	97.41
	Slime	es 2	1.98	96.24	39.64	16.84	2.26	0.28	32.09	75.2	26 4.6	2 95	.32	9.15	0.5	36	98.27
	Slime	es 1	3.76	100.00	21.17	17.00	5.90	0.49	33.91	73.7	70 4.6	8 100	0.00	45.3	7 1.'	73	100.00
	Feed		100.00		17.00		0.49		73.70		100	00		100.0	0 100	.00	
							Operating	Conditions	5								
			(Conditionin	ıg						Reag	ents, kg/T	Feed				
Operation	Operation Impeller Rotation Speed (rpm			Aeration L/Min.)	Solids %	рН	Times (Min.)	Na ₂ CO ₃	Fatty Acid	Fuel Oil	Na ₂ SiO ₃	H_2SO_4	Kero	sene	Amine	De R	eoiling eagent
Scrubbing		1000)		~60		10*3										
Phosphate Flotation			1.2	27	8.8~9.2	2.5	1.0	1.5	0.6	1.0							
Deoiling	eoiling 1600						5.0					8.0				V	ariable
Quartz Flotatio	Quartz Flotation			1.2		7.4~7.5	4.0	0.5					0.	3	1.0		
	Total Reagent Consumption, kg/T Feed								1.5	0.6	1.0	8.0	0.	3	1.0		

Table 39. Scrubbing Test Results on Flotation Feed in Steel Balls Media.

			Wa	abt(0/)			Analys	sis (%)					Distr	ribution	n (%)	
Process	Pr	oduct	wei	gin (%)	В	PL	Mg	0	A	A.I.		BPL		Mat		A.I.
			Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cun	n. Indi	v. Cu	ım.	MgC	Ind	iv. Cum.
	Conc	entrate	19.86		69.18		0.88		4.46		78.4	42		32.62	2 1.2	21
	Tails	4	0.80	20.66	60.83	68.85	0.73	0.87	15.12	4.8	7 2.7	8 81	.20	1.09	0.1	.7 1.38
	Tails	3	0.76	21.42	33.52	67.60	0.41	0.86	53.80	6.6	1 1.4	5 82	.65	0.58	0.5	6 1.94
~	Tails	2	6.80	28.22	3.54	52.16	0.12	0.68	94.27	27.7	3 1.3	7 84	.03	1.52	8.7	7 10.71
Coarse	Slime	es 4	1.02	29.24	61.88	52.50	1.67	0.71	9.11	27.0)8 3.6	0 87	.63	3.18	0.1	.3 10.83
Scrubbing	Slime	es 3	1.17	30.41	56.53	52.66	2.60	0.79	9.71	26.4	1 3.7	8 91	.41	5.68	0.1	6 10.99
Scrubbilig	Slime	es 2	1.65	32.06	41.43	52.08	5.28	1.02	15.03	25.8	33 3.9	0 95	.31	16.20	5 0.3	34 11.33
	Slime	es 1	0.54	32.60	4.94	51.30	10.04	1.17	29.89	25.9	0 0.1	5 95	.46	10.12	2 0.2	2 11.55
	Tails	1	67.40	100.00	1.18	17.52	0.23	0.54	95.94	73.1	1 4.5	4 100	0.00	28.94	4 88.	45 100.00
	Feed		100.00)	17.52		0.54		73.11		100.	00		100.0	0 100	.00
							Operating	Condition	s							
				Conditionin	g						Reage	ents, kg/T	Feed			
Operatior	1	Impel Rotati Speed (1	ler on rpm)	Aeration (L/Min.)	Solids %	pН	Times (Min.)	Na ₂ CO ₃	Fatty Acid	Fuel Oil	Na ₂ SiO ₃	H_2SO_4	Kero	sene	Amine	Deoiling Reagent
Phosphate Flor	tation	1600)	1.2	27	8.8~9.2	2.5	1.0	1.5	0.6	1.0					
Scrubbing		1000)	1.2	~60		5.0					8.0				Variable
Quartz Flotatio	on	1600)	1.2		7.4~7.5	4.0	0.5					0.	.3	1.0	
	Total Reagent Consumption, kg/T Feed								1.5	0.6	1.0	8.0	0.	.3	1.0	<u> </u>

Table 40. Scrubbing Test Results on Rougher Concentrate in Steel Balls Media.

			Waie	ht(0/)			Analys	sis (%)					Distr	ibution	(%)		
Process	Pr	oduct	weig	çiit (%)	В	PL	Mg	0	I	A.I.		BPL		Mao		A.I.	
			Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cur	n. Indi	v. Cu	ım.	MgO	Indi	v. C	Cum.
	Conc	entrate	20.48		67.56		0.75		4.20		81.0	54		30.94	1.1	6	
	Slime	es 3	1.05	21.53	66.29	67.50	1.29	0.78	2.94	4.1	4 4.1	1 85	.75	2.73	0.0	4 1	1.20
	Slime	es 2	1.04	22.58	63.87	67.33	1.72	0.82	3.95	4.1	3 3.9	3 89	.68	3.62	0.0	6 1	1.26
	Slime	es 1	1.22	23.80	52.46	66.57	3.25	0.94	8.93	4.3	8 3.7	7 93	.45	7.97	0.1	5 1	1.41
Concentrate	Tails	4	0.34	24.14	17.11	65.87	0.61	0.94	72.61	5.3	4 0.3	4 93	.80	0.42	0.3	3 1	1.74
Scrubbing	Tails	3	0.75	24.89	8.06	64.12	0.29	0.92	86.71	7.8	0 0.3	6 94	.16	0.44	0.8	8 2	2.62
	Tails	2	6.97	31.86	2.58	50.66	0.11	0.74	95.60	27.0)1 1.0	6 95	.22	1.54	9.0	0 1	1.62
	Slime	es	1.01	32.87	17.79	49.64	9.08	1.00	25.86	26.9	08 1.0	6 96	.28	18.53	0.3	5 1	1.97
Slimes Tails 1	1	67.13	100.00	0.94	16.95	0.25	0.50	97.15	74.0)8 3.7	2 100	0.00	33.80	88.0	03 10	00.00	
	Feed		100.00		16.95		0.50		74.08		100.	00		100.00	0 100.	00	
							Operating	Conditions	3								
			(Conditionin	g						Reage	ents, kg/T	Feed				
Operation	1	Impell Rotati Speed (1	ler on rpm)	Aeration (L/Min.)	Solids %	рН	Times (Min.)	Na ₂ CO ₃	Fatty Acid	Fuel Oil	Na ₂ SiO ₃	H_2SO_4	Keros	sene	Amine	Deoil Reag	ling gent
Phosphate Flor	tation	1600)	1.2	27	9.2~8.8	2.5	1.0	1.5	0.6	1.0						
Deoiling		1600)				5.0					8.0				Varia	able
Quartz Flotatio	Puartz Flotation 1600			1.2		7.4~7.5	4.0	0.5					0.3	3	1.0		
Scrubbing		1000)		~60		10*3										
		Total Rea	gent Con	sumption, k	kg/T Feed	l		1.5	1.5	0.6	1.0	8.0	0.3	3	1.0		

Table 41. Scrubbing Test Results on Final Concentrate in Steel Balls Media.

Figure 34. Rougher Concentrate Scrubbing in Quartz Media.

Phosphate Concentrate

Figure 35. Final Concentrate Scrubbing in Quartz Media.

			Waia	ht (0%)			Analys	sis (%)					Dis	tribution (%)	
Process	Pr	oduct	weig	III (%)	В	PL	Mg	0	A	A.I.		BP	۲L	MaO	А	.I.
			Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cun	n. Inc	liv.	Cum.	MgO	Indiv.	Cum.
	Conce	entrate	23.50		66.45		0.93		7.20		90	.66		40.12	2.29	
	Tails	3	0.75	24.25	28.14	65.26	0.50	0.92	59.26	8.8	1 1.	23	91.89	0.69	0.60	2.89
Coarse	Tails	2	7.05	31.31	4.09	51.48	0.29	0.78	93.29	27.8	. 1.	67	93.56	3.75	8.91	11.81
Concentrate	Slime	es 2	1.26	32.56	27.95	50.57	7.18	1.02	16.94	27.4	2 2.	04	95.60	16.55	0.29	12.09
Scrubbing	Slime	es 1	0.65	33.21	6.77	49.72	10.06	1.20	33.05	27.5	63 0.1	25	95.85	11.92	0.29	12.38
	Tails 1 Feed		66.79	100.00	1.07	17.23	0.22	0.54	96.85	73.8	33 4.	15	100.00	26.97	87.62	100.00
Feed			100.00		17.23		0.54		73.83		100	0.00		100.00	100.00	
	Feed 100.00						Operating	Condition	5							
			(Conditionin	g						Reag	gents, l	kg/T Feed			
Operation	Operation Impe Rotat Speed			Aeration L/Min.)	Solids %	pН	Times (Min.)	Na ₂ CO ₃	Fatty Acid	Fuel Oil	Na ₂ SiO ₃	H	$_2$ SO $_4$	Kerosene	Aı	nine
Phosphate Flot	tation	1600)	1.2	27	9.2~8.8	2.5	1.0	1.5	0.6	1.0					
Scrubbing 100)		~60		20.0						8.0			
Quartz Flotatio	on	1600)	1.2		7.4~7.5	4.0	0.5						0.18	().6
	Total Reagent Consumption, kg/T Feed								1.5	0.6	1.0		8.0	0.18	().6

Table 42. Scrubbing Test Results on Rougher Concentrate in Quartz Media.

			Wai	abt(0/)			Analys	sis (%)]	Distribution (9	5)	
Process	Pro	oduct	weig	giit (%)	B	PL	Mge	С	A	A.I.		BPL	MaO	А	.I.
			Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum	. Indi	v. Cum	MgO	Indiv.	Cum.
	Conce	entrate	96.66		67.34		0.94		6.45		97.8	5	82.38	93.82	
Concentrate	Slime	s 2	0.98	97.64	53.16	67.20	4.06	0.97	7.54	6.46	0.7	9 98.64	3.62	1.11	94.93
Scrubbing	Slime	s 1	2.36	100.00	38.48	66.52	6.55	1.10	14.29	6.65	1.3	6 100.0	0 14.00	5.07	100.00
	Feed		100.00		66.52		1.10		6.65		100.	00	100.00	100.00	
							Operating	Conditions	3						
				Conditionin	g						Reage	ents, kg/T Fe	ed		
Operation	1	Impel Rotati Speed (1	ler lon rpm)	Aeration (L/Min.)	Solids %	pН	Times (Min.)	Na ₂ CO ₃	Fatty Acid	Fuel Oil	Na ₂ SiO ₃	H_2SO_4	Kerosene	A	mine
Scrubbing		1000	0		~60		20.0								
		Total Rea	gent Con	nsumption, k	g/T Feed										

Table 43. Scrubbing Test Results on Final Concentrate in Quartz Media.

PARAMETRIC TESTING OF SCRUBBING WITH MEDIA

In order to study the effect of scrubbing in quartz sand media on dolomite removal, many scrubbing parameters were tested, including media ratio, slurry concentration, scrubbing time, and scrubbing intensity. Different types of scrubbing media were also compared.

Since scrubbing was done on the amine concentrate, enough Crago floats had to be done to accumulate enough concentrate. The flotation flowsheet for generating feed for the scrubbing test is shown in Figure 36, and the flotation parameters are shown in Table 44.

Figure 37 shows a detailed flowchart of the scrubbing process. Scrubbing results at varying additions of quartz sand media are presented in Table 45. In scrubbing, slurry concentration was based on concentrate feed weight percent without including the scrubbing media. Trial tests indicated that the optimal slurry concentration was about 60%, as shown in Table 46 at different slurry concentrations. The effect of scrubbing time is demonstrated in Table 47, while the effect of impeller speed is shown in Table 48. Table 49 shows a comparison of different grinding media. A sizing analysis of the scrubbed product is given in Table 50.

The following conclusions may be made based on the parametric test results:

- 1. The higher the addition of scrubbing media, the better the scrubbing performance. However, beyond 50% addition of quartz sand, scrubbing results got worse. Therefore, 50% addition of scrubbing media was considered to be the optimal dosage.
- 2. When other conditions were kept constant, higher slurry concentration gave better scrubbing results with lower MgO content in the final product.
- 3. Scrubbing time testing showed that the first ten minutes of scrubbing were the most efficient, removing 70.36% of the total MgO removed during the entire 40 minutes of scrubbing.
- 4. Dolomite removal was improved by increasing scrubbing intensity.
- 5. Under the same scrubbing conditions and at the same weight of scrubbing media, scrubbing with steel balls removed most of the dolomite but with a significant loss of phosphate.
- 6. Screening analysis of the scrubbed products showed that MgO content in the finer particles was lower, indicating that scrubbing was more effective on the fine fraction. This was due to the fact that the dolomite on the surface of fine phosphate particles was easy to scrub, while the dolomite enclosed in large particles was difficult to remove by this method.

Figure 36. Flowsheet for Scrubbing Feed Preparation.

	W	iaht(0/)			Analys	is (%)				Dis	stribution	(%)	
Product	we	ignt (%)	BP	Ľ	Mg	gO	A.I	•		BPL	м	-0	ΛŢ
	Indiv	. Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv	v. Cum		gO	A.I.
Concentrate	23.74		65.70		1.08		6.54		93.2	8	49	.57	2.07
Tails 2	8.49	32.23	4.26	49.52	0.32	0.88	92.36	29.15	2.16	95.45	5 5.1	25	10.48
Slimes	1.08	33.30	16.56	48.45	9.31	1.15	22.40	28.93	1.07	96.51	. 19	.39	0.32
Tails 1	66.70	100.00	0.87	16.72	0.20	0.52	97.74	74.82	3.49	100.0	0 25	.79	87.12
Feed	100.0	0	16.72		0.52		74.82		100.0	00	100	0.00	100.00
					Opera	ating Cond	itions						
			Conditio	oning					Rea	igents, kg/T	' Feed		
Operation	1	Impeller Rotation Speed (rpm)	Aeration (L/Min.)	Solids %	рН	Times (Min.)	Na ₂ CO ₃	Fatty Acid	Fuel Oil	Na ₂ SiO ₃	H_2SO_4	Kero- sene	Amine
Phosphate Flot	tation	1600	1.2	27	8.8~9.2	2.5	1.0	1.5	0.6	1.0			
Deoiling		1600				5.0					8.0		
Quartz Flotatio	on	1600	1.2		7.4~7.5	5.0	0.5					0.3	1.0
	To	al Reagent C	Consumption	n, kg/T Fe	ed		1.5	1.5	0.6	1.0	8.0	0.3	1.0

Table 44. Operating Conditions for Scrubbing Feed Preparation.

Phosphate Concentrate

*quartz sand size:-2.0+1.25mm.

Figure 37. Flowsheet for Parametric Scrubbing Testing.

Medium		Woigh	at (0%)			Analy	rsis (%)				Distribut	ion (%)	
(Weight %)	Product	weigi	III (70)	BI	PL	Mg	ςΟ	А	.I.	BI	PL	MaO	ΔΙ
(Weight 70)		Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	MgO	A.I.
	Concentrate	23.01		67.23		0.95		5.92		91.52		42.23	1.82
	Slimes 2	0.21	23.22	51.68	67.09	4.13	0.98	8.71	5.95	0.64	92.16	1.68	0.02
	Slimes 1	0.51	23.73	39.48	66.50	5.74	1.08	15.93	6.16	1.19	93.35	5.66	0.11
0	Tails 2	8.49	32.22	4.26	50.10	0.32	0.88	92.36	28.87	2.14	95.49	5.25	10.49
	Slimes	1.08	33.30	16.56	49.01	9.31	1.15	22.40	28.66	1.06	96.55	19.42	0.32
S T E	Tails 1	66.70	100.00	0.87	16.90	0.20	0.52	97.74	74.74	3.45	100.00	25.77	87.23
T F	Feed	100.00		16.90		0.52		74.74		100.00		100.00	100.00
	Concentrate	22.72		66.73		0.92		6.59		90.56		39.96	2.00
	Slimes 2	0.26	22.98	55.72	66.60	3.43	0.95	5.66	6.58	0.88	91.44	1.73	0.02
	Slimes 1	0.75	23.73	41.38	65.81	5.87	1.10	13.40	6.79	1.85	93.29	8.39	0.13
25	Tails 2	8.49	32.22	4.26	49.59	0.32	0.90	92.36	29.34	2.16	95.45	5.19	10.47
	Slimes	1.08	33.30	16.56	48.52	9.31	1.17	22.40	29.11	1.07	96.52	19.22	0.32
	Tails 1	66.70	100.00	0.87	16.74	0.20	0.52	97.74	74.89	3.48	100.00	25.50	87.05
	Feed	100.00		16.74		0.52		74.89		100.00		100.00	100.00

 Table 45. Scrubbing Results at Different Ratios of Quartz Sand.

Madium		Woigh	at (0%)			Analy	sis (%)				Distribut	ion (%)	
(Weight %)	Product	weigi	n (%)	BI	PL	Mg	0	A	.I.	BI	PL	MgO	ΔŢ
(Weight 70)		Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	MgO	A.I.
	Concentrate	22.43		66.97		0.86		6.31		89.57		37.41	1.89
	Slimes 2	0.34	22.77	60.52	66.87	2.85	0.89	5.35	6.30	1.22	90.78	1.86	0.02
	Slimes 1	0.96	23.73	43.92	65.94	5.41	1.07	12.23	6.54	2.52	93.30	10.09	0.16
50	Tails 2	8.49	32.22	4.26	49.69	0.32	0.87	92.36	29.15	2.16	95.46	5.27	10.48
	Slimes	1.08	33.30	16.56	48.62	9.31	1.15	22.40	28.93	1.07	96.52	19.50	0.32
	Tails 1	66.70	100.00	0.87	16.77	0.20	0.52	97.74	74.83	3.48	100.00	25.87	87.12
	Feed	100.00		16.77		0.52		74.83		100.00		100.00	100.00
	Concentrate	22.21		67.47		0.87		5.88		88.82		37.08	1.75
	Slimes 2	0.39	22.60	62.34	67.38	2.22	0.89	4.45	5.86	1.45	90.27	1.67	0.02
	Slimes 1	1.13	23.73	45.97	66.37	5.15	1.10	10.91	6.10	3.07	93.34	11.14	0.16
75	Tails 2	8.49	32.22	4.26	50.00	0.32	0.89	92.36	28.83	2.14	95.48	5.21	10.49
	Slimes	1.08	33.30	16.56	48.92	9.31	1.16	22.40	28.62	1.06	96.54	19.29	0.32
	Tails 1	66.70	100.00	0.87	16.87	0.20	0.52	97.74	74.72	3.46	100.00	25.60	87.25
	Feed	100.00		16.87		0.52		74.72		100.00		100.00	100.00
					Ope	erating Con	ditions						
75 75 75 75 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Medium	Impelle	er Rotation (rpm)	Speed	Med	ium (Weigł	nt %)		Solids (%)		Т	ime (Min.)	
Scrubbing	Quartz		1000			Variable			60			20*2	

Table 45 (Cont.). Scrubbing Results at Different Ratios of Quartz Sand.

Solida		Woigh	(04)			Analy	sis (%)				Distribut	ion (%)	
(%)	Product	weigi	n (%)	BI	PL	Mg	0	А	.I.	BI	PL	MaO	ΔΙ
(70)		Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	MgO	A.I.
	Concentrate	22.46		66.31		0.86		6.33		89.61		37.61	1.90
	Slimes 4	0.14	22.60	61.33	66.28	2.49	0.87	4.68	6.32	0.53	90.14	0.70	0.01
	Slimes 3	0.19	22.79	59.61	66.23	2.84	0.89	5.12	6.31	0.67	90.81	1.04	0.01
	Slimes 2	0.24	23.03	55.63	66.12	3.56	0.91	6.27	6.31	0.81	91.62	1.68	0.02
60	Slimes 1	0.69	23.73	38.87	65.32	6.05	1.06	14.08	6.54	1.62	93.24	8.14	0.13
	Tails 2	8.49	32.22	4.26	49.23	0.32	0.87	92.36	29.15	2.18	95.42	5.29	10.48
	Slimes	1.08	33.30	16.56	48.17	9.31	1.14	22.40	28.93	1.08	96.49	19.58	0.32
	Tails 1	66.70	100.00	0.87	16.62	0.20	0.51	97.74	74.83	3.51	100.00	25.97	87.13
	Feed	100.00		16.62		0.51		74.83		100.00		100.00	100.00
	Concentrate	22.65		65.86		0.91		6.23		90.29		39.31	1.89
	Slimes 4	0.13	22.78	57.44	65.81	3.05	0.92	5.54	6.23	0.44	90.72	0.73	0.01
	Slimes 3	0.19	22.96	54.87	65.72	3.67	0.94	6.26	6.23	0.62	91.35	1.31	0.02
	Slimes 2	0.27	23.23	48.44	65.52	4.95	0.99	9.03	6.26	0.79	92.14	2.55	0.03
50	Slimes 1	0.49	23.73	35.42	64.89	6.69	1.11	15.28	6.45	1.06	93.20	6.30	0.10
	Tails 2	8.49	32.22	4.26	48.91	0.32	0.90	92.36	29.09	2.19	95.39	5.18	10.48
	Slimes	1.08	33.30	16.56	47.87	9.31	1.17	22.40	28.87	1.08	96.47	19.17	0.32
	Tails 1	66.70	100.00	0.87	16.52	0.20	0.52	97.74	74.81	3.53	100.00	25.44	87.15
	Feed	100.00		16.52		0.52		74.81		100.00		100.00	100.00
					Ope	erating Con	ditions						
Operation	Medium	Impelle	r Rotation (rpm)	Speed	Med	ium (Weigh	nt %)		Solids (%)		Т	ime (Min.)	
Scrubbing	Quartz		1000			50			60			10*4	

 Table 46. Scrubbing Results at Different Solids Concentrations.

	Waig	bt(0/)			А	nalysi	is (%)				Distribu	tion (%)	
Product	weigi	III (%)	Bl	PL		MgC)	A	.I.	BI	PL	MaO	АТ
	Indiv.	Cum.	Indiv.	Cum.	Indi	v.	Cum.	Indiv.	Cum.	Indiv.	Cum.	MgO	A.I.
Concentrate	22.46		66.31		0.8	6		6.33		89.61		37.61	1.90
Slimes 4	0.14	22.60	61.33	66.28	2.4	9	0.87	4.68	6.32	0.53	90.14	0.70	0.01
Slimes 3	0.19	22.79	59.61	66.23	2.8	4	0.89	5.12	6.31	0.67	90.81	1.04	0.01
Slimes 2	0.24	23.03	55.63	66.12	3.5	6	0.91	6.27	6.31	0.81	91.62	1.68	0.02
Slimes 1	0.69	23.73	38.87	65.32	6.0	5	1.06	14.08	6.54	1.62	93.24	8.14	0.13
Tails 2	8.49	32.22	4.26	49.23	0.3	2	0.87	92.36	29.15	2.18	95.42	5.29	10.48
Slimes	1.08	33.30	16.56	48.17	9.3	1	1.14	22.40	28.93	1.08	96.49	19.58	0.32
Tails 1	66.70	100.00	0.87	16.62	0.2	0	0.51	97.74	74.83	3.51	100.00	25.97	87.13
Feed	100.00		16.62		0.5	1		74.83		100.00		100.00	100.00
					0	peratii	ng Condi	tions					
Operation	Medi	um	Impeller R	Rotation Sp rpm)	beed	Mee	dium (W	eight %)	So	lids (%)		Time (Mi	n.)
Scrubbing	Qua	rtz		1000			50			60		10*4	

 Table 47. Scrubbing Results at Different Scrubbing Times.

Impeller		Waigh	at(0/)			Analy	rsis (%)				Distribut	ion (%)	
Rotation	Product	weigi	n (%)	BI	PL	Mg	ςΟ	A	.I.	BI	PL	MaO	ΔΤ
Speed		Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	MgO	A.I.
	Concentrate	22.46		66.31		0.86		6.33		89.61		37.61	1.90
	Slimes 4	0.14	22.60	61.33	66.28	2.49	0.87	4.68	6.32	0.53	90.14	0.70	0.01
	Slimes 3	0.19	22.79	59.61	66.23	2.84	0.89	5.12	6.31	0.67	90.81	1.04	0.01
	Slimes 2	0.24	23.03	55.63	66.12	3.56	0.91	6.27	6.31	0.81	91.62	1.68	0.02
1000	Slimes 1	0.69	23.73	38.87	65.32	6.05	1.06	14.08	6.54	1.62	93.24	8.14	0.13
	Tails 2	8.49	32.22	4.26	49.23	0.32	0.87	92.36	29.15	2.18	95.42	5.29	10.48
	Slimes	1.08	33.30	16.56	48.17	9.31	1.14	22.40	28.93	1.08	96.49	19.58	0.32
	Tails 1	66.70	100.00	0.87	16.62	0.20	0.51	97.74	74.83	3.51	100.00	25.97	87.13
	Feed	100.00		16.62		0.51		74.83		100.00		100.00	100.00
	Concentrate	21.57		67.10		0.81		6.27		86.29		34.08	1.81
	Slimes 4	0.26	21.83	64.50	67.07	1.53	0.82	4.46	6.25	1.00	87.30	0.78	0.02
	Slimes 3	0.33	22.16	63.71	67.02	1.70	0.83	3.99	6.21	1.25	88.55	1.09	0.02
	Slimes 2	0.44	22.60	62.01	66.92	2.12	0.86	4.76	6.19	1.62	90.18	1.82	0.03
1500	Slimes 1	1.13	23.73	46.47	65.95	5.14	1.06	10.51	6.39	3.12	93.30	11.30	0.16
	Tails 2	8.49	32.22	4.26	49.69	0.32	0.87	92.36	29.05	2.16	95.46	5.30	10.48
	Slimes	1.08	33.30	16.56	48.62	9.31	1.14	22.40	28.83	1.07	96.52	19.61	0.32
	Tails 1	66.70	100.00	0.87	16.77	0.20	0.51	97.74	74.79	3.48	100.00	26.02	87.16
	Feed	100.00		16.77		0.51		74.79		100.00		100.00	100.00
	1000				Ope	erating Con	ditions						
Operation	Tails 166.70100.00Feed100.00Impeller RotatioMediumImpeller Rotatio (rpm)QuartzVariable			Speed	Medi	ium (Weigl	nt %)		Solids (%)		Т	'ime (Min.)	
Scrubbing	Quartz		Variable			50			60			10*4	

Table 48. Scrubbing Results at Different Impeller Speeds.

		Woig	at(0/)			Analy	rsis (%)				Distribut	ion (%)		
Medium	Product	weigi	n (%)	BI	PL	Mg	ςΟ	A	.I.	BI	PL	MaO	ΔΙ	
		Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	Indiv.	Cum.	MgO	A.I.	
	Concentrate	22.61		66.29		0.87		6.32		90.15		38.30	1.91	
	Slimes 3	0.19	22.80	59.61	66.24	2.84	0.89	5.12	6.31	0.67	90.82	1.04	0.01	
	Slimes 2	0.24	23.04	55.63	66.13	3.56	0.91	6.27	6.31	0.81	91.63	1.68	0.02	
Quartz	Slimes 1	0.69	23.73	38.87	65.33	6.05	1.06	14.08	6.54	1.62	93.24	8.14	0.13	
Quartz	Tails 2	8.49	32.22	4.26	49.24	0.32	0.87	92.36	29.15	2.18	95.42	5.29	10.48	
	Slimes	1.08	33.30	16.56	48.18	9.31	1.14	22.40	28.93	1.08	96.49	19.58	0.32	
	Tails 1	66.70	100.00	0.87	16.63	0.20	0.51	97.74	74.83	3.51	100.00	25.98	87.12	
	Feed	100.00		16.63		0.51		74.83		100.00		100.00	100.00	
	Concentrate	18.10		67.12		0.81		6.26		72.41		28.18	1.52	
	Slimes 3	1.93	20.03	65.90	67.01	1.22	0.85	5.28	6.17	7.58	80.00	4.53	0.14	
	Slimes 2	1.66	21.69	63.87	66.76	1.69	0.91	5.70	6.13	6.33	86.32	5.40	0.13	
Steel Delle	Slimes 1	2.05	23.74	57.07	65.93	2.97	1.09	7.80	6.27	6.98	93.30	11.71	0.21	
Steel Dalls	Tails 2	8.49	32.23	4.26	49.68	0.32	0.89	92.36	28.95	2.16	95.46	5.22	10.49	
	Slimes	1.08	33.31	16.56	48.61	9.31	1.16	22.40	28.74	1.07	96.52	19.33	0.32	
	Tails 1	66.70	100.01	0.87	16.77	0.20	0.52	97.74	74.76	3.48	100.00	25.64	87.20	
	Feed	100.00		16.77		0.52		74.77		100.00		100.00	100.00	
					Ope	erating Con	ditions							
Operation	Medium	Impelle	er Rotation (rpm)	Speed	Medi	um (Weigł	nt %)		Solids (%)		Т	'ime (Min.)		
Scrubbing	Variable	Image: 100.00 Image: 100.01 Image: 100.01 <th 1<="" image:="" td=""><td></td><td>50</td><td></td><td></td><td>60</td><td></td><td></td><td>10*3</td><td></td></th>			<td></td> <td>50</td> <td></td> <td></td> <td>60</td> <td></td> <td></td> <td>10*3</td> <td></td>		50			60			10*3	

Table 49. Scrubbing Results Using Different Scrubbing Media.

Sieve Erection	\mathbf{W}_{4} (0/)		Anal	ysis (%)	Distribution (%)			
Sieve Fraction	Wt. (%)	P_2O_5	BPL	MgO	A.I.	BPL	MgO	A.I.
+0.5 mm	20.15	29.48	64.41	0.90	8.46	19.36	20.60	26.82
-0.5 + 0.3 mm	27.80	30.62	66.90	0.95	6.63	27.75	30.00	28.99
-0.3 + 0.16 mm	44.73	31.27	68.32	0.84	5.12	45.59	42.67	36.03
-0.16 mm	7.32	30.60	66.86	0.81	7.09	7.30	6.73	8.16
Total	100.00	30.68	67.03	0.88	6.36	100.00	100.00	100.00

 Table 50. Screen Analysis of the Final Scrubbed Concentrate.

IRON AND ALUMINUM DISTRIBUTION ANALYSIS

By request of a participating company in the project, the effect of dolomite depressants on distributions of Fe_2O_3 and Al_2O_3 were analyzed. Figure 38 shows the processing flowsheet for rougher flotation. Results in Table 51 indicate that most of the Fe and Al reported to the rougher concentrate or the final concentrate, regardless of what depressant was used.

Phosphate Concentrate

Figure 38. Flotation Flowsheet for Testing Fe and Al Distribution.

Number*	Dolomite	Droduct	Weight			Analy	ysis (%)	Distribution (%)						
Number ·	Depressants	Flouuci	(%)	P_2O_5	BPL	MgO	A.I.	Fe ₂ O ₃	Al_2O_3*	BPL	MgO	A.I.	Fe ₂ O ₃	Al_2O_3
		Conc.	31.53	23.74	51.87	1.10	24.17	0.76	0.81	93.58	77.15	10.35	79.54	74.15
1	None	Tails	68.47	0.75	1.64	0.15	96.44	0.09	0.13	6.42	22.85	89.65	20.46	25.85
		Feed	100.00	8.00	17.48	0.45	73.65	0.30	0.34	100.00	100.00	100.00	100.00	100.00
		Conc.	31.74	23.99	52.42	1.24	22.70	0.72	0.77	96.71	76.21	9.75	77.00	67.81
2	None	Tails	68.26	0.38	0.83	0.18	97.72	0.10	0.17	3.29	23.79	90.25	23.00	32.19
		Feed	100.00	7.87	17.21	0.52	73.91	0.30	0.36	100.00	100.00	100.00	100.00	100.00
	A 1'	Conc.	31.34	24.06	52.57	1.17	22.36	0.67	0.82	95.23	73.76	9.53	70.17	78.92
3	Alizarin	Tails	68.66	0.55	1.20	0.19	96.94	0.13	0.10	4.77	26.24	90.47	29.83	21.08
	Keu	Feed	100.00	7.92	17.30	0.50	73.57	0.30	0.33	100.00	100.00	100.00	100.00	100.00
	Starch	Conc.	29.93	24.57	53.69	1.11	20.35	0.74	0.91	95.54	69.31	8.23	74.19	69.57
4	1.0 kg/T,	Tails	70.07	0.49	1.07	0.21	96.88	0.11	0.17	4.46	30.69	91.77	25.81	30.43
	Feed	Feed	100.00	7.70	16.82	0.48	73.97	0.30	0.39	100.00	100.00	100.00	100.00	100.00
	PAM	Conc.	23.90	29.12	63.63	0.90	10.42	0.79	0.77	88.23	41.40	3.37	65.62	53.52
5	0.75 kg/T,	Tails	76.10	1.22	2.67	0.40	93.70	0.13	0.21	11.77	58.60	96.63	34.38	46.48
	Feed	Feed	100.00	7.89	17.23	0.52	73.80	0.29	0.34	100.00	100.00	100.00	100.00	100.00
	Hengju #9	Conc.	32.04	23.45	51.24	1.09	25.18	0.70	0.77	97.10	69.08	10.85	76.74	66.85
6	0.05 kg/T,	Tails	67.96	0.33	0.72	0.23	97.49	0.10	0.18	2.90	30.92	89.15	23.26	33.15
	Feed	Feed	100.00	7.74	16.91	0.51	74.32	0.29	0.37	100.00	100.00	100.00	100.00	100.00

Table 51. Analyses of Fe_2O_3 and Al_2O_3 Under Different Test Conditions.

	Weight (%)					Analysis (%)							Distribution (%)					
Number	ber Process Product		weigi	Cigit (70)		MaO	ΔŢ	Fe ₂	Fe ₂ O ₃		Al_2O_3*		MaO	MgO A	.I.	Fa O	A1 O	
		Indiv.	Cum.	DFL	MgO	A.I.	Indiv.	Cum.	Indiv.	Cum.	DFL	MgO	Indiv.	Cum.	Fe_2O_3	AI_2O_3		
		Conc.	20.48		67.56	0.75	4.20	0.87		0.73		81.64	30.94	1.16		55.71	41.69	
		Slimes 3*	1.05	21.53	66.29	1.29	2.94	0.91	0.87	1.60	0.77	4.11	2.73	0.04	1.20	2.99	4.69	
		Slimes 2*	1.04	22.58	63.87	1.72	3.95	1.31	0.89	1.61	0.81	3.93	3.62	0.06	1.26	4.28	4.69	
		Slimes 1*	1.22	23.80	52.46	3.25	8.93	1.36	0.92	3.55	0.95	3.77	7.97	0.15	1.41	5.18	12.05	
7	Final Conc.	Tails 4	0.34	24.14	17.11	0.61	72.61	0.53	0.91	0.43	0.94	0.34	0.42	0.33	1.74	0.56	0.41	
/	Scrub.	Tails 3	0.75	24.89	8.06	0.29	86.71	0.23	0.89	0.26	0.92	0.36	0.44	0.88	2.62	0.54	0.55	
		Tails 2	6.97	31.86	2.58	0.11	95.60	0.10	0.72	0.11	0.75	1.06	1.54	9.00	11.62	2.18	2.14	
		Slimes*	1.01	32.87	17.79	9.08	25.86	2.39	0.77	4.01	0.85	1.06	18.53	0.35	11.97	7.57	11.33	
		Tails 1*	67.13	100.00	0.94	0.25	97.15	0.10	0.32	0.12	0.36	3.72	33.80	88.03	100.00	20.99	22.46	
		Feed	100.00		16.95	0.50	74.08	0.32		0.36		100.00	100.00	100.00		100.00	100.00	
		Conc.	19.86		69.18	0.88	4.46	0.84		0.81		78.42	32.62	1.21		51.67	36.92	
		Tails 4	0.80	20.66	60.83	0.73	15.12	0.84	0.84	0.81	0.81	2.78	1.09	0.17	1.38	2.08	1.49	
		Tails 3	0.76	21.42	33.52	0.41	53.80	0.50	0.83	0.51	0.80	1.45	0.58	0.56	1.94	1.18	0.89	
	D 1	Tails 2	6.80	28.22	3.54	0.12	94.27	0.10	0.65	0.15	0.64	1.37	1.52	8.77	10.71	2.11	2.34	
0	Rougner	Slimes 4*	1.02	29.24	61.88	1.67	9.11	1.07	0.67	1.47	0.67	3.60	3.18	0.13	10.83	3.38	3.44	
8	Conc.	Slimes 3*	1.17	30.41	56.53	2.60	9.71	1.17	0.69	2.15	0.73	3.78	5.68	0.16	10.99	4.24	5.77	
	Scrub.	Slimes 2*	1.65	32.06	41.43	5.28	15.03	1.63	0.74	2.97	0.84	3.90	16.26	0.34	11.33	8.33	11.25	
		Slimes 1*	0.54	32.60	4.94	10.04	29.89	2.42	0.76	4.38	0.90	0.15	10.12	0.22	11.55	4.05	5.43	
		Tails 1*	67.40	100.00	1.18	0.23	95.94	0.11	0.32	0.21	0.44	4.54	28.94	88.45	100.00	22.96	32.48	
		Feed	100.00		17.52	0.54	73.11	0.32		0.44		100.00	100.00	100.00		100.00	100.00	

Table 51 (Cont.). Analyses of Fe_2O_3 and Al_2O_3 Under Different Test Conditions.

		Weight (%)			Analysis (%)							Distribution (%)					
Number Process F		Product	weigi	II (%)	DDI	MaO	АТ	Fe ₂ O ₃		Al ₂ O ₃ *		וחם	MaO	А	A.I.		41.0
			Indiv.	Cum.	DFL	MgO	A.I.	Indiv.	Cum.	Indiv.	Cum.	DL	MgO	Indiv.	Cum.	re_2O_3	Al_2O_3
		Conc.	19.37		68.59	0.86	2.90	0.83		0.81		78.15	34.07	0.76		44.43	38.42
		Tails 4	0.58	19.95	56.42	0.95	17.37	0.94	0.83	0.77	0.81	1.92	1.13	0.14	0.90	1.51	1.09
		Tails 3	1.00	20.95	25.76	0.42	62.55	0.44	0.81	0.43	0.79	1.52	0.86	0.85	1.75	1.22	1.05
		Tails 2	13.93	34.88	1.53	0.01	97.23	0.06	0.51	0.09	0.51	1.25	0.28	18.38	20.12	2.31	3.07
0	Feed	Slimes 4*	0.60	35.48	55.72	1.24	18.36	2.07	0.54	2.31	0.54	1.97	1.52	0.15	20.27	3.43	3.39
9	Scrub.	Tails 1	57.00	92.48	0.46	0.02	98.67	0.04	0.23	0.11	0.28	1.54	2.33	76.31	96.58	6.30	15.35
		Slimes 3*	1.78	94.26	41.60	1.45	34.20	1.17	0.25	1.61	0.30	4.36	5.28	0.83	97.41	5.76	7.02
		Slimes 2*	1.98	96.24	39.64	2.26	32.09	1.62	0.28	1.83	0.33	4.62	9.15	0.86	98.27	8.86	8.87
		Slimes 1*	3.76	100.00	21.17	5.90	33.91	2.52	0.36	2.36	0.41	4.68	45.37	1.73	100.00	26.19	21.73
		Feed	100.00		17.00	0.49	73.70	0.36		0.41		100.00	100.00	100.00		100.00	100.00

Table 51 (Cont.). Analyses of Fe₂O₃ and Al₂O₃ Under Different Test Conditions.

*The flowsheet for test numbers 1-6 is shown in Figure 38, the flowsheet for test number 7 in Figure 33, the flowsheet for test number 8 in Figure 32, and the flowsheet for test number 9 in Figure 31.

OVERALL CONCLUSIONS AND ECONOMIC ANALYSIS

Based on the extensive laboratory comparative tests, three approaches were selected as potential dolomite removal methods. Preliminary economic analyses of these methods are shown below.

ADDITION OF DOLOMITE DEPRESSANT

In this process, the flotation feed slurry at about 70% solids is first conditioned with a pH modifier and phosphate collector, as is practiced currently in Florida. The dolomite depressant, a polyacrylamide, is added prior to dilution of the slurry to 30% solids followed by flotation. The dosage of the depressant is about one kilogram per ton of feed. This process could reduce MgO content in the concentrate to about 0.81%.

REVERSE FLOTATION OF AMINE CONCENTRATE

In this process, the final concentrate from the Crago process is dewatered to about 60% solids and ground to 45.22% passing 200 mesh. The ground feed is conditioned at 30% solids with sulfuric acid (2.75 kg/ton feed) and the dolomite collector USPA-31 (1 kg/ton feed). In this manner, MgO content in the final product can be reduced to about 0.7%.

SCRUBBING IN QUARTZ SAND MEDIA

The amine concentrate from the Crago process is dewatered. The scrubbing media quartz sand is then added at a quartz-to-concentrate ratio of 1:2 by weight. The mixture is adjusted to about 60% solids and scrubbed for 40 minutes in a specially designed scrubber at a speed of 1500 RPM. After scrubbing, the final product contains 0.81% MgO.

Table 52 summarizes the performance parameters of the three approaches discussed above.

Drocoss	Droduct	Viold (0/)	Grad	e (%)	Recovery	
Flocess	Floduct	1 leiu (%)	BPL	MgO	(%)	
	Concentrate	22.12	67.96	0.81		
Dolomite Depression	Total Tails	77.88	2.78	0.36	87.37	
-	Feed	100.00	17.20	0.46		
	Concentrate	19.09	65.86	0.72		
Dolomite Flotation	Total Tails	80.91	5.21	0.45	74.85	
	Feed	100.00	16.79	0.50		
Samubbing in	Concentrate	21.58	67.11	0.81		
Ouertz Send	Total Tails	78.42	2.93	0.43	86.30	
Quartz Salid	Feed	100.00	16.78	0.51		

Table 52. Performance Comparison of the Three MgO Removal Methods – CF.

Compared with the standard Crago process, the only extra cost for the dolomite depression process is the addition of one kilogram of polyacrylamide per ton of feed.

Dolomite flotation of the Crago concentrate adds a grinding operation and associated costs, the dolomite flotation and scavenging steps, sulfuric acid (2.75 kilograms per ton of feed) for pH adjustment and phosphate depression, and the dolomite collector (USPA-31 at 1.0 kg/ton).

The scrubbing process includes two scrubbing steps and two desliming operations, plus the quartz sand scrubbing media.

A rough cost estimate for the three processes is shown in Table 52.

Table 53.	Capital and C	Operating Costs	Comparison	of the Three	e Processes.
-----------	---------------	------------------------	------------	--------------	--------------

Brooss	Capital Cost	Operating Cost	Maintenance Fee		
Flocess	(\$/Ton)	(\$/Ton)	(\$/Ton)		
Dolomite Depression	None	4.75-6.35	None		
Dolomite Flotation	23.8-31.7	1.	15.8		
Scrubbing	12.7-15.8	12.7-15.8 3.2-4.7			

The dolomite depression process is the simplest method, and only adds an extra cost for the depressant at 1.0 kg/ton, which translates to a cost of \$5.4 per ton of product at a price of \$1,190 per ton for the depressant.

The dolomite flotation approach involves capital investment for both grinding and flotation (\$23.8-31.7 per ton of product) as well as operating and maintenance costs (\$15.8 per ton of product).

Although the scrubbing process requires capital investment (\$12.7-15.8 per ton), its operating cost is low (\$1.6-3.2 per ton).

Among the three approaches, the dolomite flotation process gives the lowest MgO content in the final concentrate, but reduces phosphate recovery by over 10% with high capital and operating costs. Unless it is absolutely necessary to achieve a concentrate with 0.7% or less MgO, dolomite flotation is not recommended. The scrubbing process offers the following three major advantages: (1) it does not require any chemicals; (2) the quartz sand used as scrubbing media is inexpensive and reusable; and (3) the operating cost is low. Therefore, the scrubbing technique is strongly recommended for further extensive testing.

REFERENCES

El-Shall H, Bogan M. 1994a. Evaluation of dolomite separation techniques. Bartow (FL): Florida Institute of Phosphate Research. FIPR Publication nr 02-094-108. 115 p.

El-Shall H, Bogan M. 1994b. Characterization of future Florida phosphate resources. Bartow (FL): Florida Institute of Phosphate Research. FIPR Publication nr 02-082-105. 168 p.

Gao ZZ, Zheng SB, Guan C, Hwang C. 2003. Optimizing the formulation for dolomite collector "PA-31" using raw materials from the United States. Bartow (FL): Florida Institute of Phosphate Research. FIPR Publication nr 02-150-197. 25 p.

Gruber G., Zheng SB, Hwang C. 2001. A pilot-scale demonstration of the IMC/CLDRI/FIPR flotation process for Florida high-MgO pebble. Bartow (FL): Florida Institute of Phosphate Research. FIPR Publication nr 02-133-178. 73 p.

Gu ZX, Gao ZZ, Hwang C. 1999. Development of new technology for beneficiation of Florida dolomitic phosphate resources. Bartow (FL): Florida Institute of Phosphate Research. FIPR Publication nr 02-129-167. 125 p.

Zhang JP, Snow R, Bogan M. 2008. An investigation of flotation reagents. Bartow (FL): Florida Institute of Phosphate Research. FIPR Publication nr 02-158-227. 373 p.

Zhang P, Snow RE, Bogan M. 2002. A screening study on phosphate depressants for beneficiating Florida phosphate minerals. Bartow (FL): Florida Institute of Phosphate Research. FIPR Publication nr 02-101-183. 155 p.