MEASUREMENT OF RECOVERY IN LAKES FOLLOWING PHOSPHATE MINING

Prepared by University Center for Environmental Studies Virginia Polytechnic Institute and State University under a grant sponsored by the

Florida Institute of Phosphate Research
Bartow, Florida

The Florida Institute of Phosphate Research was created in 1978 by the Florida Legislature (Chapter 378.101, Florida Statutes) and empowered to conduct research supportive to the responsible development of the state's phosphate resources. The Institute has targeted areas of research responsibility. These are: reclamation alternatives in mining and processing, including wetlands reclamation, phosphogypsum storage areas and phosphatic clay containment areas; methods for more efficient, economical and environmentally balanced phosphate recovery and processing; disposal and utilization of phosphatic clay; and environmental effects involving the health and welfare of the people, including those effects related to radiation and water consumption.

FIPR is located in Polk County, in the heart of the central Florida phosphate district. The Institute seeks to serve as an information center on phosphate-related topics and welcomes information requests made in person, by mail, or telephone.

Research Staff

Executive Director

David P. Borris

Research Directors
G. Michael Lloyd, Jr.

Gordon D. Nifong
David J. Robertson
Henry L. Barwood
Robert S. Akins

- Chemical Processing
- Environmental Services
- Reclamation
- Beneficiation
- Mining

Florida Institute of Phosphate Research 1855 West Main Street Bartow, Florida 33830 (863)533-0983

FI NAL REPORT

James R. Pratt, John Cai rns, Jr., Paul M Stewart, Nancy B. Pratt, B. R. Ni ederl ehner
UN VERSI TY CENTER FOR EMM RONMENTAL STUDI ES Virginia Pol ytechnic Institute and State Uni versity Bl acksburg, Virginia

Prepared for
FLORI DA I NSTI TUTE OF PHOSPHATE RESEARCH
1855 Vést Main Street Bartow Fl orida 33830
Contract Manager: David J. Robertson

DI SCLA MER

The contents of this report are reproduced herein as recei ved fromthe contractor.

The opi ni ons, findings, and concl usi ons expressed herein are not necessarily those of the Fl orida Institute of Phosphate Research, nor does mention of company names or products constitute endorsenent by the Fl orida Institute of Phosphate Research.

PERSPECTI VE

Davi d J. Robertson, Ph. D.
Fl orida Institute of Phosphate Research Project Manager

Phosphate mini ng in central Fl orida began about 1880 and has had a hi story of al nost conti nuous grouth si nce then. Mning began with dredging operations in the bed of the Peace Ri ver, then moved on- shore to expl oit rich deposits in the river's watershed. Early land-based mining operations used hi gh-pressure water to renove the overburden and to sl urry the phosphate ore, which was washed into a sump and renoved by centrifugal pumps to a washer plant.

The hydraulic pits were deep and steep-sided, but when they were abandoned and filled with water they created rel atively circular lakes that harnoni zed well with central Fl orida's topography. Despite the fact that the basin norphol ogy differed si gnificantly from the typical bow - shaped central FI orida lake and that the pit configuration allowed for minal littoral devel opment, the I akes mere productive and earned a reputation for supporting large gane fish popul ations. The sites of these early hydraulic mini ng operations are now eagerly sought as lakefront honesites. The lakes are surrounded by roliing hills cl ot hed by canopies of mature live oaks, making them practically i ndi sti ngui shable from nat ural lakes. Hydraulically mined areas have been extensi vel y devel oped for excl usi ve resi dential areas south of the city of Lakel and.

VIth the advent of el ectric draglines during the 1920's phosphate began to be mined in parallel excavations 200-300 feet wide and 2000 feet long. Overburden was cast into an adjacent cut in the nost conveni ent manner, usually in high wi ndrows. The pits were up to 60 feet deep and spoil wi ndrows were narrow steep, and unstable. The arrangenent of water-filled pits separated by intervening spoil windrows is often referred to as a "finger lake." Where the ming cuts were sufficiently wide, many of the spoil piles were flattened and the areas recl ai ned as "I and and I akes." These areas have al so becone popul ar honesites, al though the narrow, linear nat ure of the wi ndrowed spoil severel y restricts the size of the lots. Numerous subdi vi si on south and east of the cities of Lakel and and Bartow have been devel oped al ong the edges of the finger I akes.

The current rules of the Department of Natural Resources dealing with mine recl anation contain precise guidel ines for the recl anation of water bodi es created by mining after 1975. Unl ike the hydraul ically mined pits, slopes at the bottom of lakes within $\mathbf{2 5}$ feet of the shorel ine must not be steeper than 4: 1 horizontal to vertical as measured fromthe lowest antici pated water line. In order to encourage the devel opnent of littoral vegetation, at least 25% of the

I ake surface must be within the zone of water fluctuation, or al ter natel y, wetlands must be created adj oi ni ng the lake. In addition, at least 20% of the surface must fall within a zone bet ween the annual low vater Iine and the - 6 feet annual low water to provide for fi sh beddi ng areas and subnerged vegetation zones.

The rules for lake recl anation were promil gated to encourage the devel opnent of lakes nore like nat ural Fl orida lakes with shal low, di sh-shaped basins, a nell-devel oped Iittoral area, and a I arge portion of the water col um in the euphotic zone. Despite the fact that deep, steep-sided lakes have consi derable nerit for sone forns of recreation and water quality improvenent, little research has been carried out to weigh the costs and benefits of recl ai ming pit lakes to a condition matching typi cal nat ural basi n Iakes.

Virtually no research had been conducted on recl ai med phosphate pit lakes prior to the establishnent of the Fl orida Institute of Phosphate Research in 1978. Reid and Bl ake (1969) had studi ed a I ake they named Phosphate Pit Lake, an old hydraulic excavation south of the community of Bradley in Polk County. They found that the Iake was interesting bi ol ogically princi pally because the depauperate zoopl ankton commity was limited to popul ations of cal anoid copepods and cl adocera. Following up on this initial survey, Reid and Squi bb (1971) found that high concentrations of ions prevailed in deeper parts of the lake during nost of the year.

Anong the first projects supported by the Institute was a comparative study of recl ai ned and nat ural I akes in central Fl orida. Thi s project, "Ecol ogi cal Consi derations of Recl ai med Lakes in Central Fl ori da' s Phosphate Regi on" (Project \#82-03-018), was perforned by Envi ronnent al Sci ence and Engi neering, Inc. (ESE) of Tampa under the direction of α i ver Boody. The study was an in-depth eval uation of $\mathbf{1 2}$ phosphate pit lakes (sone naturally recl ai ned and sone recl ai ned with human subsidy) and 4 nat ural lakes in the mineralized regi on of central Fl orida. The study i ncl uded data on basi n nor phol ogy and hydrol ogy, water and substrate qual ity, phytopl ankt on, zoopl ankt on, fish, macroi nvertebrates, and aquatic macrophytes for all lakes.

The water and substrate quality portion of the ESE study was suppl enented by an investi gation conducted by Post, Buckl ey, Schuh and Jerni gan of Orlando ("Water Quality in Lakes in Central Fl orida's Phosphate Mneralized Regi on, " Project 84-03-046). PBS\&' s sampling provi ded additional data on the concentrations of 20 netals in the water and substrate for which the state has set water quality st andards.

Despite the significant anount of information that was devel oped by these prograns, however, the authors of ESE' s final report noted that the investigation did not answer all scientific questions pertaining to recl ai ned phosphate pit lakes. The results provided evi dence that recl ai ned lakes are dynamic systens and that in many respects they resemble newly-forned reservoi rs on rivers. The similarity of pit lakes to reservoirs forned the philosophical foundation for the research that was carried out under the current project.

Because phosphate lakes are new additions to the I andscape, they represent a natural laboratory of primary succession. In the majority of cases, the lakes occupy land that was previ ously upl and and contai ned no lentic habitat. Therefore, all physical, chemical and bi ol ogical processes that occur in the lakes must start from "scratch." The lakes tend to be eutrophic fromthei r genesi s as a result of el evated concentrations of phosphate fromthe mined ore, ni trogen compounds from organic nateri al incorporated into the over burden during I and clearing, and trace mineral s returned to the bi osphere from the subsoil. Bi ol ogi cal introductions into these systens tend to be haphazard. Consequently, few phosphate pit lakes contai n food uebs as complex as those normally encountered in natural central Fl orida Iakes. In addition, organi sns finding their way to the lakes may be challenged by a systemin constant flux as bi ogeochemical cycling stabilizes over a period of several years.

With consi derable background in charting the successi onal processes in aquatic ecosystens, Dr. John Cairns, Jr. and his staff at Virginia Polytechnic Institute and State Uni versity proposed to investigate the rate of successi on in phosphate pit lakes in Fl orida. They chose to use protozoans as indi cator organi sns because protists are sensitive to envi ronnental conditions and VPI \&SU researchers have anassed consi derable data on changes that occur in protozoan commuities as lakes age. They hoped to devel op a rel ativel y fast and i nexpensi ve techni que to quantify the successi onal process to gi ve recl anation personnel and state regul ators a tool to measure recl anation success.

The three Iake recl anation projects that the Institute has supported to date have provi ded a foundati on for understandi ng the Ii mol ogi cal behavi or and characteristics of small me pit lakes in Fl orida. I mportant inf ormation is still lacking on some critical parameters exerting control on these ecosystens such as the hydrol ogy of reclai ned watersheds. It is the Institute's intention to devel op a comprehensi ve understanding of recl ai ned drai nage basi ns in order to al low regul ators to write inforned legislation for improving recl amation.

ACKNOWLEDGEMENTS

The special efforts of a number of persons ensured the success of this project. Drs. David J. Robertson and David P. Borris of the Fl orida Institute of Phosphate Research, M. C. MIton Brown of WR. Grace Agricultural Chemical s, and M. Robert Goodri ch of IMC made maj or contributions to the sel ection of study sites. Dr. William H Yongue, Jr. and M. Paul V. MtCormick identified many of the bi ol ogi cal samples. Dr. Eric P. Smith of the Statistics Department, VPI $\delta S U$, provi ded a great deal of counsel on statistical anal yses. Robert B. Genter and Dougl as \mathbf{H} Deutschnan were responsible for nost of the field water chenistry. Anal yses at the VPI I ab were assisted by Judy Als and J anet Vébster. The maj ority of data transcription and compilation were done by Kirk Treakl e, Carol Guarino, Vicki Higgi nbotham Macie Wil ker, and Barbara Wblter. M. Kenneth Prevatt of WR. Grace greatly ai ded the collection of samples at the Hooker's Prairie site. Access to natural Iakes was provided by M. Frank Wilson, M. M ke Gurr, and M. and Mrs. Boyce Pol k. M. A Pi saonechi of WR. Grace aided in obtaining access to several Iakes. Mr. Ski p Hoffnan of Regal Real Estate gave permissi on for sampling at Lake Christina. Judy Vest, Becky Alen and Angie MIIer assisted in preparing this report.

TABLE OF CONTENTS

1 INTRODUCTION 1
Effects of Phosphate Mining 1
Recovery of Ecosystems 2
Project Goals 2
Objectives 2
Impact of Study 3
Advantages of Utilizing Microbial Communities 3
2 METHODS AND PROCEDURES 5
Study Sites 5
Physical-Chemical Measurements 6
Colonization Processes 9
Interaction of Communities and Abiotic Factors 11
Protozoan Functional Groups 14
3 CHARACTERISTICS OF LAKES IN THE PHOSPHATE MINING REGION 23
Physical-Chemical Characteristics of Lakes 23
Microbial Community Characteristics 25
4 DISCUSSION 89
Changes in Lake Chemistry with Age 90
Microbial Community-Estimate of Recovery Rate 91
Water Quality Considerations 93
Summary and Conclusions 93
5 REFERENCES 113APPENDICES (available for use at the Florida Instituteof Phosphate Research Library)

LIST OF FIGURES

Figure Title Page
1 Partial map of Polk County, Fla. (see inset) showing location of lakes sampled in Fall 1984 16
2 Typical artificial substrate placement for surface water sampling in a lake or pond (from Cairns et al., 1979) 17
3 Discriminant analysis of Florida lakes using 18 important environmental parameters from the March 1984 study period. See Table 1 for number interpretation. This figure is a plot of canonical axis 1 and 31
4 Discriminant analysis of Florida lakes using 18 important environmental parameters from the March 1984 study period. See Table 1 for number interpretation. This figure is a plot of canonical axis 1 and 3 32
5 Canonical variate analysis for all lakes using 15 important environmental parameters from Fall 1984 sampling. Dark cirlces $=$ active mined pits, open circles $=$ reclaimed lakes, dark squares = natural lakes, open squares = unre- claimed lakes (28 observations hidden) 33
6 Dendrogram of cluster analysis of pooled samples using the 96 most occurring species 34
7 Dendrogram of cluster analysis of pooled samples using the 100 species that occur in 11 to 24 of the samples 35
8. Reciprocal averaging ordination of protozoan samples (inspecies space) using presence/absence data. The 96 mostoccurring species were used in this ordination in 49 pooledsamples from the March 1984 study period36
9 Detrended correspondence analysis (DCA) for 103 protozoan samples (2 outliers discarded) and 495 species from Fall 1984 sampling. Dark circles = active mined pits, open circles $=$ reclaimed lakes, dark squares $=$ natural lakes,open circles $=$ unreclaimed lakes (4 observations hidden).37
Figure Title Page
10 DCA plots of axis 1 versus 3 for all samples using only phytoflagellate species from Fall 1984 sampling period. Dark circles $=$ active mined pits, open circles $=$ reclaimed lakes, dark squares = natural lakes, open squares = unreclaimed lakes (7 observations hidden) 38
11 DCA plots of axis 1 versus axis 2 for Fall survey without reclaimed lakes. Only phytoflagellates were used in this display. Dark circles = active mined pits, dark squares = natural pits, open squares $=$ unreclaimed lakes (1 observa- tion hidden) 39
12 The relationship of DCA axis 1 and ortho-phosphate in lakes from the Fall 1984 sampling. Letters identify lakes (10 observations hidden) 40
13 The relationship of DCA axis 1 and total phosphate in lakes from the Fall 1984 sampling. Letters identify lakes (4 observations hidden) 41
14 The relationship of DCA axis 2 and pH in lakes from the Fall 1984 sampling. Letters identify lakes (11 observa- tions hidden) 42
15 The relationship of DCA axis 2 and iron in lakes from the Fall 1984 sampling. Letters identify lakes (27 hidden observations) 43
16 The relationship of DCA axis 2 and ortho-phosphate in lakes from the Fall 1984 sampling. Letters identify lakes (8 observations hidden) 44
17 The relationship of DCA axis 4 and pH in lakes from the Fall 1984 sampling. Letters identify lakes (14 observa- tions hidden) 45
18 The relationship of DCA axis 4 and ammonia in lakes from the Fall 1984 sampling. Letters identify lakes (41 observations hidden) 46
19 The relationship of DCA axis 4 and nitrate-nitrite in lakes from the Fall 1984 sampling. Letters identify lakes (53 observations hidden) 47
20
Relationship between DCA axis 4 and factor 2 from Fall 1984 sampling. Letters identify lakes (see Table 26) (17 obser- vations hidden) 48
21 The relationship of DCA axis 4 and the estimated species equilibrium number for lakes from the Fall 1984 sampling. Letters identify lakes (33 observations hidden) 49
FigureTitlePage
22 The relationship of the estimated species equilibrium number to the logarithm of lake age for the Fall 1984 sampling. Letters identify lakes (0 observations hidden) 50
23
Dendrogram based on matrix of Pinkham and Pearson similarity coefficients comparing distribution of protozoan species in functional groups among study lakes, Fall 1984 51
24 Distribution of protozoan species into functional groups for selected lakes from Fall 1984 sampling. Numbers represent the average number of species within a functional group for equilibrium samples 52
25 The relationship of pH to the logarithm of lake age for the Fall 1984 sampling. Letters identify lakes (33 observations hidden) 96
26
The relationship of water alkalinity and the logarithm of lake age for the Fall 1984 sampling. Letters identify lakes (60 observations hidden) 97
27 The relationship of calcium and the logarithm of lake age for the Fall 1984 sampling. Letters identify lakes (52 observations hidden) 98
28 The relationship of magnesium and the logarithm of lake age for the Fall 1984 sampling. Letters identify lakes (57 observations hidden) 99
29 The relationship of water hardness and the logarithm of lake age for the Fall 1984 sampling. Letters identify lake (70 observations hidden) 100
30 The relationship of sulfate and the logarithm of lake age for the Fall 1984 sampling. Letters identify lakes (53 observations hidden) 107
31 The relationship of potassium to the logarithm of lake age for the Fall 1984 sampling. Letters identify lakes (59 observations hidden) 102
32 The relationship of aluminum to the logarithm of lake age for the Fall 1984 sampling. Letters identify lakes (64 observations hidden) 103
33 The relationship of selenium to the logarithm of lake age for the Fall 1984 sampling. Letters identify lakes (63 observations hidden) 104
Figure Title Page
34 The relationship of ammonia and the logarithm of lake age for the Fall 1984 sampling. Letters identify lakes (61 observations hidden) 105
35 The relationship of nitrate-nitrite and the logarithm oflake age for the Fall 1984 sampling. Letters identifylakes (71 observations hidden)10636 The relationship of total nitrogen to the logarithm oflake age for the Fall 1984 sampling. Letters identifylakes (57 observations hidden)107
37 The relationship of ortho-phosphate and the logarithm oflake age for the Fall 1984 sampling. Letters identifylakes (53 observations hidden)108
The relationship of total phosphate and the logarithm oflake age for the Fall 1984 sampling. Letters identifylakes (35 observations hidden)10939 The relationship of nitrogen to phosphorus ratio to thelogarithm of lake age for the Fall 1984 sampling. Lettersidentify lakes (60 observations hidden)11040 The relationship of total organic carbon and the logarithmof lake age for the Fall 1984 sampling. Letters identifylakes (38 observations hidden)111
41 Relationship of equilibrium species number for protozoans on artificial substrates and lake age. Squares are forSpring 1984 sampling, circles are for Fall 1984 sampling.112

LIST OF TABLES

Table Title Page
1 Study sites for protozoan samples and lakes from Spring 1984 sampling 18
2 Study sites, lake codes, lake age, lake status, and authority for lakes sampled in Fall 1984 19
3 Outline of water collection and analysis 20
4 A list of metals analyzed by Atomic Absorption Spectro- photometry, STORET numbers, pretreatment, methods of analysis and detection limits 21
5 Mean, standard deviation, minimum and maximum values for nitrogen, phosphorus and carbon from Spring 1984 sampling. 53
6 Mean, standard deviation, minimum and maximum values for parameters measured during Spring 1984 sampling 54
7 Stepwise analysis results of physico-chemical variables and nutrient values for Spring 1984 sampling using 18 environmental parameters 56
8 Eighteen parameters that are important for separating lakes in the Spring 1984 sampling 57
9 Canonical variate analysis for all lakes using 18 important environmental parameters from the Spring 1984 sampling 58
10 Identification of lake site, code, and symbols for Spring 1984 sampling 59
11 Factor analysis with varimax rotation of 18 important environmental parameters for all lakes from Spring 1984 sampling 60
12 Nutrient summary statistics for all lakes sampled in Fall 1984 61
13 Nutrient summary statistics for natural lakes sampled in Fall 1984 62
14 Nutrient summary statistics for active mine pits sampled in Fall 1984 63
15 Nutrient summary statistics for unreclaimed mine pit lakes sampled in Fall 1984 64
16 Nutrient summary statistics for reclaimed mine pit lakes sampled in Fall 1984 sampling 65
17 Physico-chemical and colonization summary statistics for all lakes for Fall 1984 sampling 66
18 Physico-chemical and colonization summary statistics for natural lakes for Fall 1984 sampling 67
19 Physico-chemical and colonization summary statistics for active mine pits for Fall 1984 sampling 68
20 Physico-chemical and colonization summary statistics for unreclaimed mine pit lakes for Fall 1984 sampling 69
21 Physico-chemical and colonization summary statistics for reclaimed mine pit lakes for Fall 1984 sampling. 70
22 Stepwise analysis results of physico-chemical variables and nutrient values for Fall 1984 sampling using 20 environmental parameters (105 samples each) 71
23 Stepwise analysis results of physico-chemical variables and nutrient values for Fall 1984 sampling using only 15 environmental parameters (105 samples each) 72
24 Canonical variate analysis for lakes (21) using 20 environmental parameters from Fall 1984 sampling 73
25 Canonical variate analysis for all lakes (21) using 15 important environmental parameters from Fall 1984 sampling 74
26 Lake name, symbol, and status for all lakes sampled in Fall 1984. $A=$ active, $R=$ reclaimed, $U=$ unreclaimed, and $N=$ natural lakes 75
27 Factor analysis with varimax rotation of 15 important environmental parameters for all lakes from Fall 1984 sampling 76
28
Species distribution and the 10 most common species found in the Spring 1984 sampling 77
29 Correlations of ordination coordinates with physico-chemical parameters and factors for Spring 1984 sampling.78
Table Title Page
30 Species distribution and 10 most common species found in Fall 1984 survey. The numbers of samples refer to the number of pooled quadruplicate samples (105 total) 80
31 Correlations of ordination coordinates for physico-chemical parameters and factors for Fall 1984 sampling for all types of protozoans (495 species) 81
3233Protozoan colonization parameters for studied lakes.Estimates of equilibrium species number (Seq) and coloni-zation rate (G) are shown. Ages of lakes are for Spring1984 (lesser value) and Fall 1984 sampling. Note: $r^{2}=$coefficient of determination for regression, $p=s i g n i f i-$cance, (-) indicates lake not sampled83
34 Total species number found in each of the twenty-one lakes from the Fall 1984 sampling 85
35 Chemical parameters correlated with equilibrium species numbers in study lakes, Fall 1984 8636 Distribution of protozoan species into functional groupsfrom Fall 1984 sampling. Number of species in eachfunctional group and percent of total are recorded foreach lake87

EXECUTI VE SUMMARY

Surface mining of phosphate-bearing rock in central Fl orida annually affects approxi nately 6000 acres. Recl amation of these mined lands is di rected by the Fl orida Departnent of Natural Resources under Chapter 16C-16 Mne Recl anation Rules of the Fl orida Administrative Code. Rules di rect the recl anation of lakes, wetlands, and upl ands. The recl anation of Iakes is intended to provide ecosystens that will support fish and widife and that function in the same manner as natural or unmined lakes.

The research summarized in this report, "Measurenent of Recovery in Lakes Following Phosphate Mning," was sponsored by the Fl orida Institute of Phosphate Research Applied Research Program The purpose of the project was to apply a si mple, direct method to the assessment of recovery of lakes recl ai ned after mining. The specific objectives of the project were to (1) determine col onization rates and equilibrium species numbers for microbi al commities devel oping on artificial substrates in natural, recl ai ned, and unrecl ai med lakes; (2) determine the effect of physi cal and chemical factors on microbi al col onization rates and equilibrium speci es numbers in lakes; and (3) estimate the rate of recovery of lakes after mining.

A broad range of lake ages was sel ected for study. Sever al physi cal and chemical parameters were measured in water sampl es taken concurrently with bi ol ogi cal collections in each lake studi ed. These anal yses determined level s of nutrients and trace netal s as hell as commonl y neasured parameters. Pol yuret hane foam artificial substrates were placed in each lake and collected on an expanding time scale over a two- neek period. The number and ki nd of protozoan speci es col oni zi ng these substrates were determined. Rel ative abundances of speci es were estimated.

During the first sampling effort in March 1984, 10 I akes were st udi ed. Recl ai ned lakes ranged in age fromless than 1 year to 7 years while unrecl ai ned lakes st udi ed were over 60 years ol d. Tho nat ural I akes were al so studi ed. Chemical differences anong lakes were very apparent. Pot assium hardness, al kalinity, conductivity, and total organi c carbon separated I ake types. However, chemi cal differences anong lakes did not correl ate with di stributions of protozoan species in lakes. Speci es di stributions appeared rel ated to phosphate and al uminum concentrations. Nb cl ear pattern di stingui shing recl ai ned lakes from nat ur al or unrecl ai ned I akes was apparent. Exami nation of the col oni zation process, however, showed that protozoan col oni zation was markedly reduced in very young lakes (<1 year old).

During the second sampling effort, 21 lakes were studi ed. These I akes incl uded al lhe lakes studied in the first phase of the project and 11 additional lakes generally less than 4 years old. This added group of I akes incl uded sampling of water in two active mine pits and t wo new y recl ai med (ca. 6 month ol d) lakes. Si milar to results of the first sampling effort, lakes could be di stingui shed by composite factors based on conductivity, cal ci um al kalinity, pH, nutrients, and al uminm Sel eni um and al umin level s were high, and pH s were lowin the new y recl ai ned I akes.

Natural and unrecl ai med I akes and active mine sites could be di sti ngui shed by their protozoan comminities. Examination of the photosynthetic portion of these commities further strengthened the differentiation. Recl ai med lakes spanned the range of variability for other I akes. Examination of protozoan speci es by functional group reveal ed differences bet ween newly recl ai ned lakes and ot her lakes. Protozoan col onization of artificial substrates was severel y depressed in new y recl ai med I akes as compared with other systens studi ed, incl uding active mine sites.

A variety of anal yses, both chemical and bi ol ogi cal, showed that new y recl ai med lakes (<6 nonths ol d) were very different from ot her I akes studi ed. Al umi num and sel eni um level s were generally hi gh in these Iakes, and pH s were generally low Whters were typically turbid. Mcrobi al commities were different in terns of col oni zation dynamics and functional group composition. Speci es numbers were general ly low Comparison of these Iakes to ol der Iakes showed that lakes greater than one year of age were very similar to all ages of recl ai ned and unrecl ai med I akes and that ol der recl ai med I akes spanned the variability present in the nat ural and unrecl ai ned lakes studi ed.

These studi es suggest that recovery of the microbi al component of I akes after reclanation is rapid and effective. Protozoan speci es represent internedi ate steps bet ween bacterial degraders and hi gher trophic level s. They have a vari ety of functions and, to sone extent, represent the nany functional groups found in the larger ecosystem These speci es are generally sensitive to perturbations including toxic and nutrient i nputs.

Thi s investigation demonstrates that recovery can be docunented by examining a portion of the microbi al bi ot a of recl ai ned systens. It has not exami ned the rel ati onshi p bet ween commity structure and system function. Further studi es examini ng the processing of carbon and inorganic nutrients will be needed to determine if recl ai ned ecosystens have functional attributes comparable to natural or unmi ned lake ecosystens in the same geographic area. Examination of the structure and dynamics of a conpl ex subset of recl ai med ecosystens demonstrates the ability of the bi ota to integrate a number of important factors in commity patterns. These factors have been identified to sone extent by statistical anal ysis of physico-chemical factors but are limited by the complexity and adequacy of water sampling.

1. I NTRODUCTI ON

EFFECTS OF PHOSPHATE M N NG

The Fl orida phosphate industry is a multimilion dollar industry whi ch supplies a val uable product to Anerican and international agricultual markets. While the addition of phosphate fertilizers to agricultural soils is a vital augmentation, the industry has often been criticized for its hi gh demand for energy and water and for landscape degradation in strip mined areas (Blakel y, 1973). Neverthel ess, the industry made early, positive noves to recl ai mmined areas. For example, Anerican Cyani mid began recl anation of the Saddl e Creek mines in 1949. Many of these early recl amation efforts were conducted on uncharted theoretical grounds but were nonet hel ess successf ul. A functioning system devel oped, al though it was undoubtedly different from the origi nal ecosystem

There is a long history of publicinterest and debate concerning the protection and recovery of wetlands and mined areas in Fl orida. This interest is the culmination of a variety of concerns about protection of nat ural areas from devel opnent, nai ntenance of water tabl es, and use of wetlands as envi ronmental filters. Envi ronmental groups have applied consi derable pressure to protection of natural areas (e.g., Al derson, 1983). There has been strong support for reestablishing water ways and comprehensi ve managenent of drai nage basi ns even in areas where many wet l ands are pri vatel y ouned (e.g. Hartman, 1983). Concern about the devel opnent of artifici al wetlands and the use of nat ural wetlands for treating muni ci pal wastes has been a subject of study for many years.

These concerns are of special importance to the phosphate industry which mines over 6000 acres per year and uses over 100 bili ion gal ons of water. While phosphate mining contributes to the devel opment of native I ands and consumes much water, mined lands are al so potential reservoirs and artificial netlands.

The purpose of the investigation descri bed bel ow was to devel op a si mple, di rect, scientifically justifiable neasure of biological devel opment in recl ai med lakes. There is no generally recognized neasure of recl anation, and, although there are many potential definitions, a si mple, di rect, predi ctive measure is needed to assess community devel opnent in recl ai ned systens. We have not attempted to offer an index which will be all-encompassing, but have concentrated on integrating measures that assess Ientic water quality. Assessnent of recl anation of surrounding terrestrial communities will necessitate longer-termstudies and will al so be subj ect to less objective aesthetic factors. However, the rel ationship bet ueen water quality and the condition of the adj acent terrestrial system has been well established.

RECOVERY OF ECOSYSTEMS

Defining recovery of danaged systens or verifying the recl anation of a once di sturbed area is in an early devel opment al stage. The eastern deci duous forest is, for the nost part, a second grouth forest inexorably transformed by human settlenent. While nost observers consi der the eastern forests to be "recovered", they are not identical to the ancestral moods. Hunan imports such as Dutch el mosease and chest nut blight have eliminated certain species. Yet a forest renai ns. Recovery is, then, not easily defined.

When one speaks of recovery in less familiar ecosystens, grassl ands for example, agreenent becones nore difficult. In aquatic systens, where nost basic know edge concerni ng nanagenent has yet to be uncovered, there is little agreenent. Even very di sturbed aquatic ecosystens will support certain tol erant species.

To verify recovery or recl anation, natural systens must be studi ed and acceptable similarities to natural systens must be attai ned. These similarities nay be considered to be sufficient if measures of certain i mportant variables fall within the neasured variability of comparable nat ural systens.

Recovery of danaged systens or recl anation in new y created systens is essentially a col oni zation-successi on phenomenon. As such, there will be consi derable variation in col onization and succession withindiferent groups of organi sns. Estimates of col onization equilibrium run to extremel y long ti mes (e.g. hundreds of years) in sone species (e.g. birds, MacArthur and Wilson, 1967; Haila, et al., 1982). Conversely, this nay take only a few days or weeks in other groups (e.g., Maguire, 1977).

PRO ECT GOALS

The goal of this project was to apply a si mple, di rect method to the assessnent of recovery of lakes recl ai ned after mining. The project di rected attention at a variety of physi cal-chemical factors interrel ated with microbi al commity devel opment in attempting to identify factors whi ch contribute to accel erated recovery of recl ai ned lakes.

OBj ECTI VES

The following were specific objectives rel ating to the assessnent of recovery using microbi al community devel opnent on artificial substrates. (1) To determine col oni zation rates and equilibrium species numbers of microbi al commities devel oping on artificial substrates in natural, unrecl ai ned, and recl ai ned lakes in central Fl orida's phosphate mining area. (2) To determine the effect of physical and chem cal factors on microbi al col oni zation rates and equilibriumspeci es numbers in lake waters. (3) To estimate the rate of recovery of lake waters abandoned or recl ai ned after mining.

I MPACT OF STUDY

Mbre accurate predictions of recovery costs and tine will allow nore preci se predi ctions of ming costs and benefits rel ative to total site expenditures. At present there is no routine monitoring or measurement that can qui ckly compare ecosystens usi ng complex bi ol ogi cal commities. Managenent of systens to perpet uate target species is often productive for the target speci es but overly si mplistic in approach to the total biol ogical commity. Managed habitats are typically expensi ve to nai ntain and lack nany of the complex feedback controls that al low nat ural commities to fluctuate in response to envi ronnent al changes without collapsing. The nethods used were desi gned to be inexpensi ve and rapid in obtaining results, standardized, and potentially applicable by rel atively untrai ned personnel as routine neasures.

ADNANTAGES OF UTI LI ZI NG M CROBI AL COMMN TIES

Mcrobi al communities have a number of di stinct advantages in the assessnent of water quality.

1. Protozoans and other microbes are rel atively easy to collect in the field without costly equi pment. The organisns are snall, easily handl ed, and requi re onl y small contai ners for transport. In contrast, fish and nacroinvertebrates are comparatively difficult to sample and handl e.
2. Large numbers of samples can be collected without affecting the integrity of the indi genous bi ota. Thi s can be a serious problem when collecting fish, I arge numbers of insect Iarvae, or other nacroi nvertebrates.
3. Protozoans have been shown to form complex speci es assenbl ages that have many of the characteristics of structured commities (Cairns, 1971). They are a di verse group with representatives of several trophic I evel s and are thus potentially capable of minicking the responses of the entire nat ural commity more accuratel y than any other group. Furthernore, because of thei r hi gh reproductive rates and intinate contact with the envi ronnent (Cairns, 1974), protozoa are capable of nanifesting a comminity-level response to environment al stress (such as a shift in dominance pattern of speci es occurrence) nore rapidly than assenblages of hi gher organi sns.
4. Although protozoans are affected by changes in the chemical, physi cal, and bi ol ogi cal envi ronment in the same general way as other organisns, their probably cosnopolitan distribution is shared with only a few other bi ol ogical groups. Speci es with similar envi ronnental requi rements can occur toget her anywhere in the world; characteristic assend ages are likely to be found wherever ecol ogical conditions are appropriate. In contrast, geographical isol ation and endemismare necessarily important consi derations when comparing assenbl ages of hi gher or gani sns.

Exam nation of microbi al commities is often not done on artificial substrates during the early stages of the col oni zation process and often
not until they are presumed to have reached a MacArthur- Wilson (1967) equilibrium condition. However, the col onization process nay be as informative as the equilibrium condition (Cairns, et al., 1979). Similar results were obtai ned by Henebry and Cairns (1979) in surveying the South Ri ver upstream and downst ream from a naj or source of organi c input. This study al so denonstrated the effectiveness of pol yurethane artificial substrates as collecting devices. Approxi nately fifty percent nore species were collected on artificial substrates than on nat ural substrates.

I ntensi ve anal ysis of col oni zation dynamics in wetlands have reveal ed similar patterns in all systens studi ed. Pl afkin et al. (1980) found di rect rel ationshi ps bet ween trophic status of wetlands and col onization rate. Henebry et al. (1981) showed si milar results for productive netland habitats such as bogs and fens. whi ch have rapid col onization while a compl ex suamp site denonstrated very great species di versity but sl ower col oni zation.

2. METHODS AND PROCEDURES

Confirnation of recovery or association of envi ronmental measures with comparable val ues in undi st urbed systens requi res caref ul sel ection of the recl ai ned areas studi ed and compari son of standard parameters with those of undi sturbed, "control " systens. The methods descri bed bel ow were di rected at achi eving the following goal s:

1. early sel ection of potential study areas
2. grouping of possible study sites based on known hi story, physical, and water chemistry similarities, and
3. concentration of research effort in potentially rewarding study sites with sone background study.

STUDY SI TES

Sel ection of Study Sites

Lakes chosen for study were sel ected after consultation with FIPR staff and industry representatives. For the initial (March 1984) phase of work, ten sites were sel ected (Table 1). An additional 11 sites were added to the initial group of Iakes for the second (August-Septenber) phase of the project. Sites were sel ected to gi ve a broad range of ages for the first phase. The second group of lakes added to the study was sel ected to provide infornation concerning what appeared to be the critical recovery period based on preliminary results from the first sampling effort. Nat ural I akes sel ected as reference sites were estimated to be typical of lakes in the area. That is, the "cl eanest" or l east eutrophic lakes and the obvi ousl y stressed lakes in the regi on were excl uded. Nat ural lakes sel ected were noderately to heavily settled al ong the Iake shores. At least tno lakes nere sel ected for each age cat egory with nost age categori es having three "replicate" lakes for the second phase of the project. The youngest mined lakes (new y recl ai ned and active mi ne pits) and the ol dest mined lakes (unrecl ai ned) were represented by onl y two I akes.

Lake ages were estimated initially based on reports by reclanation directors consulted. Mbre accurate ages were obtai ned for lakes recl ai ned under present recl anation laws. Ages were determined as the difference bet ween the date of initiation of sampling and the earthnoving begun during recl anation activities. Dates for the completion of earthnoving and erosi on repai \mathbf{r} were al so obtai ned but were not used in age determinations. A completelist of sampl lakes and their ages is given in Table 2.

Study sites selected for this project were all located in Polk County (Figure 1). Previ ously mined sites ranged in age from essentially zero to over 60 years. Additionally, uater in two active nine cuts uas examined.

Active Mne Sites. Witer standing in two active mine cuts at the W R. Grace Hooker's Prai rie Mne was sampled. These sites, arbitrarily desi gnated HPA and HPB, contai ned essentially surface water impounded and pumped as needed. Both sites were very steepsi ded. Whter was routinel y pumped into HPB, and the water at this site was very green and productive. Witer at HPA was mach nore turbid and the sedi nent here was a highly leached, light gray sand-clay mixture. These-sites were sampled during the second phase (August-Septenber) of the project.

New y Recl ai ned Lakes. Tho sites at the W R. Grace Bonny Lake site vere reclai ned shortly bef ore the second phase of the project. These sites, VRG BL-SP(5) (GOA) and VRG-BL-SP(4) (GOB), were reclained less than si x nonths prior to the second sampling effort. Sone erosi on repai r and revegetation was still in progress at these sites. Lake GOA was still in the process of filling while GOB was still being regraded and repaired. Grass pl anted to stabilize the banks around GOA was Iuxuriant. The water at GOB was extrenely turbid.

One-Year Od Lakes. Three I akes at the Grace Bonny Lake site nere chosen for a group of I akes approxi natel y one year old. Tho lakes, GB and GC, were in the VRG-BL-SP(6) site. The third Iake, GA was in the VRG-BL-SP(2) site. These lakes were 0.6-0.8 years old during the first phase and 1.1-1. 3 years old during the second phase of the project. Onl y lakes GA and GB were sampled during the first phase.

Lakes GA and GB were very similar to lakes GOA and GOB during the initial sampling. Both lakes had a rel ativel y I ush grouth of grass stabilizing the banks, but GB was extrenel y turbid. Suspended natter was so dense that certain routine water chemistry determinations based on col or changes nere difficult to interpret. Witer I evel s in both lakes increased dranatically bet neen the first and second samplings, and turbidity decreased markedly in GB prior to the second sampling effort.

Tuo- Year d d Lakes. Three I akes ranging in age from 2.0 to 3.4 years nere grouped as "tno-year ol d" I akes. Tho of these I akes, GAA and G2B, were at the Grace Bonny Lake site in recl anation sites VRG BL- 12 and VRG BL-SP(I) respectively. The third Iake, denoted STB, was at IMC's South Ti ger Bay reclamati on site, IMC-NP-SP-1. Lakes GRA and STB were approximatel y the sane ages (2.5 and 2.4 year during phase tuo sampl ing). G2A was 3.4 years during the sane sampling period. Al three lakes had extensi ve stands of energent vegetation (chi efly Typha) al ong shorelines. These I akes were only sampled during the second phase of the project.

Four-Year dd Lakes. Three lakes estinated to be four years old were grouped in this category. These Iakes incl uded two Iakes at the Grace Bonny Lake site, G4 (VFG-BL-10) and Lake 1215 (VRG BL-9), which were 4.9 and 4.8 years old during the second project phase. The third lake in this
group was North Tri angle (NT, I MC-P-4) whi ch was actually 6.25 years during the second phase. Onl y NT and 1215 were sampled during the first phase of the project.

Seven- Year $\mathrm{Old}_{\mathrm{d}}$ Lakes. Lakes Law (LL) and Brown (LB) were desi gnated as seven- year old I akes. Both were on WR. Grace Property and were recl ai ned in 1977 and estimated to be 7 to 7.5 years old. These lakes were sampl ed during the first phase of the project. Lakes Law and Brown were a nearly identical pair of small lakes. Both were steeper sided than younger I akes and lacked extensi ve Typha stands. A third I ake was added to this group for the second sampling effort. This lake, G7 (VRG-BL-4), was 7.25 years old during the second phase of the project.

Unrecl ai med Lakes. Two ol d, unrecl ai ned lakes were exami ned duri ng both phases of the project. These Iakes were estimated to have been mined at least 60 years prior to sampling. Both lakes had steep sides and were said to have been mined usi ng ol der techni ques (M LI oyd, FI PR, personal communi cation). The first of these sites was a long (ca. 1.5 km) narrow I ake that parallel state hi ghway 37 j ust north of the town of Mil berry and was on W R. Grace property. We desi gnated this site "Long Lake" (LG). During the second project phase this lake was affected by hi ghway construction al ong state route 37. A silt curtain was installed paralleling the hi ghway. Sampling was restricted to the southeastern part of the lake which was apparently not affected by construction activities. Heavy backfilling and sedi ment intrusi on was restricted to the northern hal f of the Iake. The second Iake in this group, Lake Christina (LK), is located near the intersection of state route 37 and county road 540A Sampling was restricted to the southern portion of this lake to avoid di sturbance of sampling devi ces.

Natural Lakes. Two nat ural I akes were sel ected for study during the first project phase. Lake Arietta is a large, shallow circular lake. Previ ous st udi es had shown it to have low productivity (Boody et al., 1984). Its water was generally clear, and there were patches of energent vegetation (chi efly rushes) al ong the shore. Eagle Lake was sonewhat nore productive and had several extensi ve Typha stands. A thi rd lake was added to this group during the second phase of the project. Lake Shi pp, located in the winter Haven chai \boldsymbol{n} of lakes, was heavily stai ned and was nearly surrounded by homes with the exception of a small park al ong the southwestern shore. This lake had a few isol ated stands of Typha where bulkheads and retaining walls had not been built. There has been sone indi cation that this lake is a candidate for rehabilitation (Fernald and Patton, 1984).

Physi cal - Chemi cal Measurenents

Whter samples were collected in conjunction with artificial substrate collections (descri bed bel ou). Vater was collected in cubitai ners and transported back to the field Iab in ice chests. Maximum hol ding time was kept to 1 - 2 hours. Back in the field lab, a 1 L aliquot fromeach col lection was imedi atel y frozen for nutrient anal ysis. A 50 mh aliquot was placed in glass screw cap test tubes and fixed with trace pure nitric acid to $\mathrm{pH}<2$ for metal analysis. A 100 ml aliquot was pl aced in glass bottles,
fixed with phosphoric acid to $\mathbf{p H}<2$, covered with al uni num foil and capped for total organic carbon anal ysis. Nutrient, trace metal and total organi c carbon anal yses were perforned at the VPI Iab. The renai ni ng water was used for field lab neasurements to be carried out the same day as sample collection. Anal ytical methods outlined by USEPA (1983) are indi cated by STORET number. Citations are gi ven for nethods used from other sources. An outline of the anal yses carried out are shown in Table 3.

Fi el d Measurenents

The following paraneters were measured in the field each tine water was collected: air and water temperature, di ssol ved oxygen, and conductivity. Four separate readi ngs were taken for each parameter and an average reported. Both air and water temperature were neasured usi ng the thermistor of a conductivity meter and reported in ${ }^{\circ} \mathrm{C}$ (STORET NO. 00010). Di ssol ved oxygen was measured usi ng the YSI Mbdel 54A oxygen meter and reported in ppm (STORET NO. 00299). Conductivity was neasured with a YSI Mbdel 33 conductivity meter with a S-C-T probe and results were reported in unhos/ cm (STORET NO. 00095). Meters were calibrated according to manufacturer's operator's nanual each time the above neasurements were nade.

Fi el d Lab Measurenents

Al kalinity, total hardness, and pH were determined on water samples brought back to the lab, each paraneter bei ng neasured four ti nes separatel y on each samplein order to obtain an average val ue (except with pH in whi ch a nedi an was reported). A Fi sher-Accumet pH Controller Mbdel 650 pH meter with a pol yner body liquid-filled combi nation el ectrode was used and calibrated daily using comercially available pH buffers (STORET NO. 00403). Al kalinity was neasured using unfiltered sample which was titrated with $0.01 \mathrm{MH}_{2} \mathrm{SO}_{4}$ to a pH 4.5 end poi nt and reported as $\mathrm{ng} \mathrm{CaCO}_{3} / \mathrm{L}$ (STORET NO. 00410). Total hardness was measured using unfiltered sample buffered with comercial NH_{4}-EDTA hardness buffer and titrated with 0.01 M EDTA using Eriochrone Black \mathbf{T} as an indicator; results were gi ven as ng $\mathrm{CaCO}_{3} / \mathrm{L}$ (STORET NQ 00900).

Measurenents Made at VPI Lab

Nutrient, total organic carbon, and trace metal anal yses were carried out at the VPI Iab.

Nutrients. Sulfate (STORET NO. 00945): Sulfate concentrations on unfiltered sampl es were neasured on a Di onex System 10 Ion Chronatograph using a Di onex Ion Pac guard col um, an HPIC AS3 separator col umn, and an ASC- 2 suppressor col um. The el uent was $0.0024 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3} / 0.0003 \mathrm{NaHCO}_{3}$ and separation was carried out using a flow rate of $3 \mathrm{mi} / \mathrm{min}$. A 300 ul sample I oop was used. Standards were run every tine anal ysis was carried out.

Total Phosphate (STORET No. 00665): Total phosphase was determined by the ascorbic acid nethod on unfiltered samples after di gestion with potassi um persulfate.

Dissol ved Ortho-Phosphate (STORET NO. 00671): Sampl es were filtered through a glass fiber filter and dissol ved orthophosphate was measured as described for total phosphate without the digestion step.

Ammoni a (APHA 1981, pp. 360-361): Ammoni a was measured on filtered sampl es usi ng the phenate nethod.

Ntrite (STORET NO. 00615): Nitrite was measured on filtered samples following the di azotation of sulfanilande coupling with N (I-naphthyl)et hyl enedi ami ne to form a col ored azodye.

Nitrate + Nitrite (STORET NO. 00630): Nitrate was reduced to nitrite by passi ng the sample through a copper-cadmi um reduction col umn. The resulting nitrite was measured as previ ously described.

Total Suspended Sol ids (APHA, 1981, pp. 92-92): A known vol une of sample was evaporated in a tared porcelin casserole and dried to a constant wei ght. Casser ol es were rewei ghed and the increase in wei ght was used to cal cul ate ng suspended sol $\mathrm{ids} / \mathrm{L}$.

Total Organi c Carbon (STORET NO 00680): Total organic carbon was neasured in samples fixed with phosphoric acid to pH <2 on a DC-54 Utra Low Level Total Organic Carbon Anal yzer (Dohr man/ Envi rontech. Inc.).

Trace Metal Anal ysi s. Aci di fied water sampl es were anal yzed by either direct aspiration into the flame of a Perkin-El ner 603 Atonic Absorption Spectrophotometer or by injection into an HGA 2100 Graphite Furnace. Sample pretreat nent was done according to methods in USEPA (1983). Table 4 lists STORET numbers, pretreat nent required, nethod used and detection Iimits for all of the metals anal yzed.

In addition to paraneters determined fromanal ysis, certain additional variables that have been shown to have bi ol ogi cal neani ng were created from the data set. Total nitrogen (desi gnated TOTN in data reports) was taken as the sum of $\mathrm{NH}_{3}-\mathrm{N}$ and $\mathrm{NO}_{3}-\mathrm{NO}_{2}-\mathrm{N}$. This val ue is not strictly equi val ent to other reports of total nitrogen since the fraction of nitrogen in living tissues was not determi ned for each sample. However, this val ue can serve as an additional indication of the rel ative availability of dissolved nitrogen compounds in lakes.

The rel ative amounts of di ssol ved nitrogen and phosphorus compounds were estimated fromthe ratio of TOTN and $0 \mathrm{PO}_{4}$. The ratio of di ssol ved nitrogen and phosphorus can reflect which nutrient is typically nore limiting to al gal grouth. The ratio of di ssol ved nitrogen (as TOTN) to total organi c carbon was al so exami ned. Thi s ratio can be used to compare the rel ative aval ability of nitrogen for heterotrophic assimilation in the water col um.

Col oni zation Processes

The invasi on of artificial, introduced islands into aquatic ecosystens by microbrial species such as protozoans follows the theoretical prediction of the MacArthur-Vill son (1967) equilibriumtheory of island
col oni zation. Exposure of substrates and collection times were desi gned to produce data which will allowfitting of the nodel equation:

$$
\begin{aligned}
& S_{t}=\hat{S e q}\left(1-e^{-G t}\right) \\
& \text { where } \quad S_{t}=\text { speci es at tine } t, \\
& \\
& \hat{S e q} \text { - equilibrium speci es numbers } \\
& \\
& G=\text { rate fitted constant, } \\
& t=\text { time. }
\end{aligned}
$$

For nost systens, equilibriumis attai ned in 7-21 days al though this may be consi derably shorter if there is consi derable flow in the case of streans, or if the water is rich in organi cs (Henebry et al., 1981). Sampling at intervals of 6, 12, and 18 hours nay be indi cated in highly productive or enriched systens (e.g., bogs, fens, marshes).

In general, substrates are suspended in the water col um (e.g., Fig. 2) in sufficient numbers to allow 3-4 replicate islands to be collected at each sampling. Islands are renoved fromthe water and harvested by squeezing the contents of the substrates into a sterile collecting jar or bags. The sample is allowed to settle and the speci es are then exhaustivel y identified by repeated subsampling. Experience has shown that 3 to 4 subsamples are sufficient to attain an asymptotic species number. At equilibriumthis represents $85-95 \%$ of the available protozoan speci es whi ch would be collectible by laborious means from nat ural substrates (e.g., Patrick et al., 1967). Nat ural substrate collections allow com parison of speci es numbers, functional groups (e.g., phyt of lagel late al gae, ciliates, anoebae) but yield little infornation about commity function.

Col onization, on the other hand, is a vital functional characteristic. Mcrobi al commities typically have a hi gh rate of species turnover. Si nce the cells are naked and in intimate contact with the envi ronment, the speci es present conti nually respond to changing envi ronnental conditions. Exact envi ronnent al requi rements of protozoans are difficult to determine and are generally quite broad (Cairns, 1965; Nbland, 1925; Nol and \& Godjics, 1967). The group of speci es present may represent a vast array of possi ble permatations of available tol erant speci es (Cairns and Henebry, 1982). The col oni ation process, specifically the equilibrium are reflective of local conditions. There is now an increasing body of evi dence showing the utility of protozoan col oni zation as an envi ronnental noni tor (Henebry and Cai rns, 1979; Cai rns, et al., 1980; Bui kena, et al., 1983; Cai rns, et al., 1985).

Fi el d Experiments. Pol yurethane foam artificial sbustrates (5×6.5 $x 7.5 \mathrm{~cm})$ were placed in each lake studi ed. Substrates were anchored to wei ghts on nyl on lines and imersed at depths of approximatel y $\mathbf{3 0 - 5 0} \mathbf{~ c m i n}$
each lake. Sufficient substrates were placed to allow collection of 4 replicate substrates after 0.5 (12 h) $1,3,8$, and 10 days of exposure. During Phase 1 of the project exposure tine of $0.5,1,3,10$, and 14 days were used. Substrates collected after $0.5 \mathrm{~d}(12 \mathrm{hr})$ exposure were placed in lakes in the eveni ng and collected the following norning. Previ ous work has indi cated that there is no difference in short-term ni ght or day exposures (J. R. Pratt, N B. Pratt, unpubl ished data).

Collection of substrates invol ved renoving the substrate from the water and placing it imedi ately in a label ed, sterile whirlpak collecting bag. Al collections were made in the forenoon and collected substrates were placed in insul ated contai ners for transport to the fiel d Iaboratory. Collection of water samples and other field collected data was made concurrent with substrate collections.

At the field laboratory, each collected substrate was harvested. Harvesting invol ved squeezing the contents of the substrate into the col lecting bag. The substrate was then di scarded. The collected contents were pl aced near a source of Iight and allowed to settle and respond to available light conditions. Subsamples were then renoved for identification of protozoan species. Al sampl es were exami ned live and species. identifications were comple within 24 hr , and generally within $\mathbf{1 2} \mathbf{h r}$, of collection for each sample.

During the first phase of the project, only presence of species in samples was recorded. During the second phase of the project, a rel ative abundance scal e was used to esti nate rel ative numbers of protozoan species in samples. This scal e, based on that of Sramek- Husek (1956) used a five point scale to rate abundance as follons:

$\frac{\text { Rank }}{1}$	I ndi vi dual s/ slide
2	$1-2$
3	$3-10$
4	$11-25$
5	$26-100$
2	>100

The results of the col oni zation experi nents were fitted to the Mac-Arthur- Wilson equilibrium nodel equation, $S_{t}=\hat{S e q}\left(1-e^{-G t}\right)$, by non-li near I east squares regressi on anal ysis usi ng Marquardt methods of esti mation (Hel wig and Council, 1979). Estimates of equilibriumspecies number (Seq) and col oni zation rate (G) were obtai ned. The regressi on was tested for si gni ficance according to Draper and Smith (1981).

I NTERACTI ON OF COMMN TIES AND ABI OTI C FACTORS
Factor Anal ysi s
Factor anal ysi s (princi pal components) was performed on the physi cochemical data fromthe lakes. The nost distinctive characteristic of this
anal ysis is its ability to reduce a complex data set to a fewer number of new variables terned factors. Factor anal ysis techni ques enable one to determine if some underlying pattern of rel ationshi ps exi sts such that that data nay be reduced to a snaller set of components that nay be taken as source variables accounting for the observed interrel ations in the data (Kim 1975).

PCA uses transfornations of a set of variables to forma new set of composite variables that are orthogonal (uncorrel ated) to each other. No assumptions about the underlying struct ure of the variables is required (e.g., normality). The method iterates to what would be the best linear conbi nation of variables. The first princi pal component may be vi ewed as the best summary of linear rel ationshi ps exhi bited in the data set. For nornal purposes, the investigat or retains only the first few components for futher rotation which si mplifies the factor structure by noving the factor axes to a position for maxi mum clarity. The factors and envi ronnent al paraneters are then correl ated with the X and Y coordinates from an ordi nation to determine which parameters and factors are rel ated to the di stribution of samples (i.e., communities).

Canoni cal Vari ate Anal ysi s

Canoni cal variate anal ysis is a data reduction technique rel ated to PCA and canoni cal correl ation. This techni que was used in this study to examine al I physi co-chemi cal parameters to determine those that contributed to di stingui shi ng lakes. For example, nany of the paraneters from the March 1984 sampling period were similar for all lakes measured. Bei ng similar, these add no new inf ornation to the understanding of differences in lake water chemistry or commities. Thi stechni que allows an examination of all paraneters si multaneously and determination and elimination of those that do not appear important. The procedure is then repeated, but this time the parameters that do not appear important are omitted. If little separation occurs when the techni que is perforned using the omitted parameters, resulting in a stochastic di stribution of samples, then one can with some confidence onit fromfurther anal ysis the physi co-chemical parameters deened uni mportant.

Cluster Anal ysi s

The purpose of cluster anal ysis is to place samples (and species) into groups or cl usters suggested by the data, not defined a priori, such that objects in a gi ven cluster tend to be similar to each other in some sense, and objectives in different clusters tend to be di ssimilar. Cl uster anal ysis is the first and si mpl est cl assification techni que empl oyed on the species by sample data collected in this study. With this technique, one is able to examine all samples at the same time and determine their rel ationship to ot her samples by examining their species composition. One is al so able to do the converse, except that this is much less information for the scope of this study.

Cl uster anal ysi s is used to first exam ne the rel ati onship anong samples froma lake to determine if they formacl uster. For example, it noul d be inf or mati ve if each lake formed a cl uster, or nat ur al lakes forned
one cl uster, recl ai med I akes in another, and unrecl ai ned lakes formed a thi rd .

There are many al gorithns available. One method that has thus far proved satisfactory has been the nethod of average Iinkage (SAS, 1984). This method basi cally exam nes the average di stance bet ween sampl es based on thei r speci es composition.

Ordi nati on
Ordination is a technique used to examine the overall similarities of the commities in the lakes under study. We used tuo ordination prograns, Ordiflex and Decorana (Gauch, 1977; Hill, 1979). Ordiflex is a flexiblecomputer program used to rel ate samples by their speci es composition. The pl acement of samples al ong two axes was exam ned for rel ationshi ps to known envi ronnent al gradi ents to paraneters (Gauch, 1977).

Ordi nation techni ques separated I akes according to their speci es composition. Both rel ative abundance and presence/ absence data were used. The ordi nation techni que yiel ded a matrix of percentage similarities for rel ative abundance or for presence/ absence data using the coefficient of di stance al gorithm

Ordi nations were perforned to separate lakes according to their species composition and to reduce the compl exity of the speci es data set. The results were plotted as scatter figures to show rel ative si milarities by the di stance between points. The coordi nates of the sampl es on the scatter di agram were used to rel ate sampl es and speci es to underl yi ng envi ronment al gradi ents and to study patterns of comminities as rel ated to patterns of envi ronmental factors. This last type of ordination al lowed inference about envi ronmental rel ationshi ps of samples and speci es.

Reci procal averaging ordi nation (RAO) was consi dered best to use with the type of data obtai ned in this study. It is of ten the first ordination techni que used when the important envi ronnental gradi ents are not known. RAO obtai ned sample scores from speci es scores and the converse by first assi gni ng arbitrary species scores. The first iteration used wei ghted averages to obtain sample scores. The second iteration used the same procedure as the first, but began with the sample scores produced in the first iteration to obtain new speci es scores. This process continued until the scores converged to a uni que sol ution (Gauch, 1977).

Ordi nations were perforned to search for patterns in the data. The X and Y coordi nates for the sampl es (lakes) were then correl ated with envi ronnental parameters and factors (conposite parameters) in an attempt to di scern rel ationshi ps bet ween envi ronnental parameters and the di stribution of samples and species.

Det rended correspondence anal ysi (DCA) was al so empl oyed with the data gathered in the second phase of the study. It is considered a substantial i mprovenent over reci procal averaging ordi nation by avoi di ng the t wo nai n problens of RAQ, that of the frequent arch di stortion due to the
dependency of the second axis on the first, and compressi on of axis ends (HII, 1979).

PROTOZOAN FUNCTI ONAL GROUPS

Lifestyles of common protozoan species have been described in the literature. On the basis of these reports, speci es were assigned to one of six functional groups: bacterivores, producers, non-specific feeders, al gi vores, saprovores, and raptors (Pratt and Cai rns, 1985). A nean count of species in each functional group was cal cul ated from four collections at each site on each sampling day. Then data for the last 3 sampling days were aver aged yi el ding a single indicat or of the di stribution of protozoan speci es into functional groups for each lake. It was assumed that the I ater sampling days represented equilibrium numbers. This assumption was supported by ANOVAs comparing the square root transformed counts for each functional group over the last three sampling days. there were no significant differences between days (all p>0.05).

Contingency table anal ysis (e.g., Sokal and Rohl f, 1981) was used to compare functional group di stributions bet ween ages of lakes. In addition, Kaesler et al. (1978) suggested that similarity indices comonly used with taxonomic data nay be equally useful for comparing commity struct ure based on functional di stinctions. Pi nkham and Pearson's Coefficient of Similarity (B) was computed for each pair of lakes (Pi nkham and Pearson, 1976). Thi s index was cal cul ated as:

$$
\begin{equation*}
B=\frac{1}{K} \sum \frac{\operatorname{Min}\left(X_{i a}, X_{i b}\right)}{\operatorname{Max}\left(X_{i a}, X_{i} b\right)} \tag{2}
\end{equation*}
$$

where Kis the number of different functional groups in the two lakes, Mn indicates the smaller of $X i$ a or $X i b, i . e$. the numbers of species in the ith functional group for lakes a and b respectivel y, and Max indicates the Iarger of Xia and Xib. The Coefficient of Similarity should vary from 0 for very di ssimilar di stributions in functional groups to a val ue of 1 for perfect correspondence bet ween samples. The resulting natrix of coefficients for all paired comparisons was then cl ustered using a nearest nei ghbor techni que and a dendrogram was produced. The dendogram provi des a visual indi cation of the degree of similarity between all sampl es. Fi nally, the hypothesis that lakes of the same age are nore similar in functional group structure than are lakes of different ages was tested by sorting coefficients for pai red comparisons into two groups. One group consisted of all coefficients for pairs of the sane age. The other group incl uded al lloefficients for pairs of mixed age. A Wil coxon Rank Sum test was used to compare the medi an similarities of these two groups. The null hypothesis was that same age lakes were not nore similar than were I akes of different ages.

DATA ANALYSI S

Results of the first sampling effort (March 1984) were used to evaI uate the effectiveness of sampling and collecting methods and to identify variables which showed Iittle difference anong I akes or lake types. Si nce a broad range of lake ages and types were initially sel ected, it was generally accepted that parameters showing little variation would provide mini mal inf or nation. Paraneters which were difficult to eval uate (based on anal ytic methods) and which appeared to provide little infornation were el iminated from anal ysis during the second sampling effort. These paraneters were only el iminated after factor anal ysis had shown that they added virtually no infornation even to anal ysis of composite variables generated in multivari ate anal yses. The anal ysis of mercury and chemical oxygen demand were el iminated on this basis.

The initial sampling of ten lakes was used to identify critical periods for recovery following lake recl anation. Mbre intensi ve sampling of additional lakes within the supposed critical range was undertaken in the second sampling effort (August-Septenber 1984). During this sampling, t went y - one I akes were st udi ed. Seasonal differences were not consi dered to be of maj or interest for two reasons: only two seasonal periods were exami ned (spring, fall, nei ther an annual maxi mum or mi nim) and young I akes were conti nui ng to age bet ween sampl ings confounding seasonal and aging comparisons. We have, ther ef ore, restricted detailed anal yses to within-season differences and have nade only occasi onal comparisons bet ween seasons.

Fig. 1. Partial map of Polk County, Fla. (see insert) showing location of lakes sampled in fall 1984.

Fig. 2. Typical artificial substrate placement for surface water sampling in a lake or pond (from Cairns et al., 1979) 。

Table 1
Study sites for protozoan samples and lakes from Spring 1984 sampling. (Status: $R=$ reclaimed, $U=$ unreclaimed, $N=$ natural).

Site	Code	Number	Age	Status
WRGBLSP2	GIA	0	$<1 \mathrm{yr}$	R
WRGBLSP6	GTB	9	<1	R
Lake 1215	Ll2	1	4	R
North Triangle	NT	2	4	R
Lake Brown	LB	4	3	R
Lake Law	LL	3	3	R
Long Lake	LG	8	<60	U
Lake Christifa	LK	7	<60	N
Lake Arietta	LA	5	--	N
Eagle Lake	6	--		

Table 2
Study sites, lake codes, lake age, lake status, and authority for lakes sampled in Fall 1984. STATUS: $A=$ active, $R=$ reclaimed, $U=$ unreclaimed, $N=$ natural.

Site	Code	Age March/September 1984	Status	Reclamation designation/ Authority
Hooker's Prairie A	HPA	-/-	A	W. R. Grace
Hooker's Prairie B	HPB	-1-	A	W. R. Grace
GOA	GOA	-10.5	R	WRG-BL-SP(5)
GOB	GOB	-10.5	R	WRG-BL-SP(4)
GIA	GIA	1.2/1.7	R	WRG-BL-SP(2)
G1B	G1B	0.8/1.3	R	WRG-BL-SP(6)
GIC	GIC	0.8/1.3	R	WG-BL-SP(6)
G2A	G2A	2.9/3.4	R	WRG-BL-12
G2B	G2B	1.9/2.4	R	WRG-BL-SP(1)
South Tiger Bay	STB	2.0/2.5	R	IMC-NP-SP-1
G4	G4	4.4/4.9	R	WRG-BL-10
Lake 1215	12	4.3/4.8	R	WRG-BL-9
North Triangle	NT	5.7/6.2	R	IMC-P-4
Lake Brown	LB	est.7.0/7.5	R	W. R. Grace
Lake Law	LL	est.7.0/7.5	R	W. R. Grace
G7	G7	6.7/7.2	R	WRG-BL-4
Long Lake	LG	>60	U	W. R. Grace
Lake Christina	LK	>60	U	Regal Real Estate
Lake Arietta	LA	-	N	Polk Co.
Eagle Lake	EL	-	N	Polk Co.
Lake Shipp	LS	-	N	City of Winter Haven

Table 3
Outline of water collection and analysis.

Table 4

A list of metals analyzed by Atomic Absorption Spectrophotometry, STORET numbers, pretreatment, method of analysis and detection limits.

Metal	STORET NO.	Pretreatment	Method	Detection(mg/L) Limit
Aluminum	01105	None	Furnace	0.003
Arsenic	01002	NiNO_{3}	Furnace	0.001
Calcium	00916	LaCL $_{2}$	Flame	0.010
Chromium	01034	None	Flame	0.050
Copper	01042	None	Flame	0.020
Iron	01045	None	Flame	0.030
Lead	01051	None	Flame	0.020
Magnesium	00927	LaCl 2	Flame	0.007
Manganese	01055	None	Flame	0.050
Potassium	00937	None	Flame	0.040
Selenium	01147	NiNO $_{3}$	Furnace	0.002
Zinc	01092	None	Flame	0.025

3. CHARACTERISTI CS OF LAKES I N THE PHOSPHATE M N NG REG ON

PHYSI CAL-CHEM CAL CHARACTERI STI CS OF LAKES

Spring Sampling

Table 5 reports mean, standard devi ation, naxi mum and minm val ues for nitrogen, phosphorus and carbon from all lakes conbi ned and recl ai ned lakes. Table 5 al so presents the same for unrecl ai ned lakes and nat ural lakes. Paraneters differed anong lake types: $\mathrm{NH}_{3}, \mathrm{TPO}_{4}$, and OPO_{4} were sonewhat less in the nat ural lakes than in the unrecl ai ned and recl ai ned lakes. TOC did not appear to differ markedly anong the lake types but was somewhat hi gher in recl ai ned I akes.

Table 6 summarizes envi ronment al parameters neasured in the Spring 1984 sampling. Al kal inity, sulfate, cal ci um potassi um and al uni num showed nore obvi ous differences anong lakes.

A stepwise sel ection procedure (Table 7) identified potassi um hardness, al kalinity, and total organic carbon as important variables in explaining lake variability with arsenic and conductivity contributing to a lesser degree.

Canoni cal variate anal ysis allowed elimination of several environmental parameters that appeared to be of little importance in distinguishing lakes. Table 8 summarizes the 18 envi ronnental paraneters remaining. A canoni cal variate anal ysis perforned on the 18 renaining parameters (Table 8) separated primarily according to potassi um concentrations with contributions fromtotal organic carbon, hardness, al kalinity, and conductivity. Table 9 presents val ues for canonical variate axes 1 to 4. Axis 2 separated Iakes al ong a strong al kalinity and a weaker hardness gradi ent. Lakes were separated al ong axis 3 by hardness, conductivity, and arsenic. Pl ots of axis 1 versus 2 (Figure 3) and axis 1 versus axis 3 (Figure 4) (see Table 10 for number interpretation) show the di stributions of water samples al ong these composite axes.

Several observations can be made based on this anal ysis. First, nat ural lakes (numbers 5 and 6 on Figures 3 and 4) had si milar characteristics and were separated from the other lakes al ong axis 1 (composed of pri marily a potassi um component). The remai ni ng lakes (recl ai ned, and unrecl ai ned) were not separated al ong axis 1 , but were di scriminated al ong axi s 2 and 3 which have loadi ngs composed of an al kal inity and hardness gradient. Another interesting observation was that lake $G B(9)$, a young recl ai ned 1 ake, appeared sonewhat by itself al ong canoni cal axis 2, thus appearing to separate al ong an al klity gradient (this separation shows up later in the protozoan data). This lake had been recently reclai ned
and was very turbid during the spring sampling.
The factor anal ysi s perforned on the 18 important envi ronmental paraneters showed three i mportant factors when a screen pl ot was exami ned. These three factors expl ai $n \mathbf{6 4}$. 5% of the 18 envi ronmental paraneter data set variability. Factor 1 (Table 11) was composed of loadi ngs from hardness and conductivity with weaker contributions fromsulfate, total suspended sol $i d s$, and arseni c and accounted for 30.4% of the data set vari ability.

Factor 2 was primarily composed of total phosphate and ortho- phosphate with weaker I oadi ngs from al umin num sel eni um Factor 3 was deri ved from pH and al kal inity loadi ngs with additional loadi ngs from manganese, asrenic, and iron.

Fall Sampling

Tabl es 12-16 summari ze ni trogen, phosphorus, and carbon for all I akes during the Fall 1984 sampling. Nat ural I akes had the lowest phosphate val ues and active I akes the hi ghest. Recl ai ned I akes had high nitrogen val ues but al so had high variability.

Tabl es 17-21 summarize the other envi ronnental paraneters neasured. The newly recl ai ned lakes were hi ghest in nean val ues for hardness, conductivity, nagnesi um al uminm and sel eni um The newly recl ai ned lakes had the lowest protozoan speci es numbers. Nat ural lakes were lowest in cal ci um hi ghest in potassi um and had the highest equilibriumspecies number.

A stepui se sel ection procedure (Table 22) identified magnesi um as the nost important variable differentiating lakes with contributions from cal ci um sel eni um and sulfate. Ortho-phosphate and potassi um could al so be included in this anal ysis but several tol erance val ues fall bel ow $\mathbf{0} 10$ when they were added. Thi s pattern is al so evi dent when only the nost i mportant 15 envi ronment al parameters were examined in the stepuise procedure (Table 23).

Canoni cal variate anal ysis was utilized in an attempt to separate I akes using envi ronmental parameters. Twenty paraneters were used initially (Table 24). Thus several paraneters were eliminated by using the criteria of I owest within canonical structure. Whter and air temperature, amonia, total organic carbon, and iron were renoved fromfurther anal ysis.

Table 25 presents canonical variate (within canonical structure) results for the 15 important envi ronnental paraneters used in separating lakes. Fi gure 5 shows the lake sampl es in envi ronment al variable space. See Table 26 for letter identity as to lake and status. No pattern of I ake separation was evident. However, there was good separation of Iakes al ong axes 1 and 2 (Figure 5) and lesser separation al ong axis 1 and 3 and axis 2 and 3. Canoni cal axis 1 was primarily conposed of a nagnesi um I oadi ng with contributions from cal ci um conductivity, sulfate, sel eni um and al kalinity. Canoni cal axis 2 is formed by loadi ngs of sulfate, calci um al kalinity, and ortho- phosphate with weak loadi ngs from magnesi um
conducti vity, and potassi um Canoni cal axis 3 is clearly composed of loadings of sel eni um al kalinity, potassi um and cal ci um

Table 27 shows factor anal ysis results for the 15 nost important envi ronmental parameters. Three factors expl ai n 68.71\% of the data set variability. Fact or 1 (37.35% is a linear conbination of conductivity and cal ci um with additional loadi ngs from magnesi um total suspended solids, sulfate and hardness. Factor 2 (16. 00% is composed prinarily of I oadi ngs frompH with contributions from al kal inity and nitratenitrite. Factor 3 is derived froma strong total phosphate component with contri buti ons from al uni num and ortho- phosphate.

M CROBI AL COMMN TY CHARACTERI STI CS

Spring Survey

In the spring survey 537 protozoan taxa were identified (Table 28). Many (128, 23. 8% were found in onl y one sample. Fewer than 10% of the speci es were found in over 10% of the samples, and onl y 3 speci es were found in over $\mathbf{2 0 \%}$ of the sampl es. The nost common speci es incl uded Mbnas spp., appearing in 45 of 49 pool ed triplicate samples; Cryptononas erosa (44) and Cyat hamonas truncata were al so common.

Results of acluster anal ysi s of the nost commonly occurring 96 speci es (Fi gure 6), and the 100 next nost common speci es (Fi gure 7), showed little pattern in these dendrograns with natural, reclai ned, and unrecl ai ned lakes intermixed. There did appear to be sone grouping of prot ozoan samples from natural and unreclai ned Iakes in the right hal f of each figure, with nostly recl ai med lakes to the left.

Fi gure 8 presents the results of reci procal averaging ordi nation (RAO) of protozoan sampl es usi ng presence/ absence dat a of combi ned tripl icate sampl es for each I ake/ date. The 96 nost common species are al so used in the ordi nation depi cted. Other ordinations were perforned, but were no nore infornati ve graphically and are not shown. As nentioned before, Iake $\mathbf{G} B(9)$ appears to be sonewhat separated, appeared at the top of the diagram All other samples appear distributed in a random fashi on suggesting very little grouping of the protozoan samples in species space bet ween nat ural, recl ai ned and unrecl ai med I akes.

Table 29 presents correl ation val ues bet ween ordi nation axes and physi co- chemi cal parameters and factors. Envi ronmental parameters instrunental in separating lakes, pH and potassi um were not correl ated with any of the ordination axes, and thus, did not appear to be rel ated to the di stribution of commities. Several environmental parameters were reI ated to the di stribution of commities. These include nitrate for XORD ; AL and Fact or 2 for YORD ; hardness, conductivity, nitrite, nitratenitrite, total-phosphate, al kalinity, and factor 2 for YORD3. Only correl ations greater than $+0.464(p<0.001)$ are consi dered due to the I arge sample si zes and inflated p-val ues.

Fal I Survey

In the fall survey 892 protozoan taxa were identified (Table 30). Of these, 216 (24%) were found in onl y one sample. The frequency of common species is further documented in Table 30, al though this summary is not strictly identical to that shown in Table 20 for the spring sampling. Quadrupl icate samples were pool ed and averaged during data compilation. Thus, if a speci es occurred in one or nore of the quadruplicate samples taken on a gi ven day in a gi ven lake, it nould be counted as occurring once for purposes of this data summary. The frequency of occurrence (and rel ative abundance) of speci es in sampl es was accounted for in data anal ysis but these differences are not reflected in Table 30.

Several speci es were conmon and these have generally been reported as common pi oneer invaders in other studi es (e.g., Henebry and Cai rns, 1981). Cryptomonas erosa was found in all 105 pool ed quadruplicate sam ples. This phytoflagel late is very common in freshuaters. Several bodoni d flagel I ates (Boda spp. and Rhynchononas nasuta) were al so common. The nost common ciliate was Ctedoctema acanthocrypta, and the nost comon anoeba was Naegl eria gruberi which has been similarly reported all over the norld (e.g., Page, 1976).

Several cl uster anal ysis procedures were used on the protozoan data using both the nost common 495 speci es and the 106 speci es of phyt of lagel late (phot osynthetic protozoans). These anal yses were uni nformative reresulting in severe chai ning of the samples with no apparent pattern.

Detrended correspondence anal ysi s (DCA) was perforned on the most common 495 speci es (those that occurred in 5 or more of the pool ed (quadruplicate) samples). Two sampl es were identified as outliers and eliminated. These two outliers were LB day 1 and LK day 0.5. Al other sam pl es were agai n exami ned by DCA (Fi gure 9). There was broad di spersi on of recl ai med I ake protozoan sampl es and overlap of recl ai ned lake samples with active, unrecl ai med and natural lake samples. There was little overlap bet ween protozoan sampl es from nat ural lakes and protozoan samples from unrecl ai med I akes al ong axis 2 of the DCA

The DCA axes were exam ned for validity. Axis 1 had an ei genval ue of 0.184 ; axi s 2, 0.116 ; axi s $3,0.099$; and axi s 4, 0.087 . Pl otting ei genval ues versus axis number (a scree plot) showed that axis is statistically sound. A sharp drop in ei genval ue occurred for axis 2 which was similar to axis 3 and 4. However, the resi dual val ue was larger than the tol erance val ue of the iteration bet ween axis 2 and axis 3. Therefore, it was necessary to interpret the results of axis 3 and 4 with caution.

A pl ot of axis 4 agai nst axis 1 reveal ed that new y recl ai ned I akes (GOA and GOB) and the active mine sites (1 PA and HPB) tended to separate from the other lakes.

Figure 10 is a pl of of DCA scores for axis 1 versus axis 3 based only on phyt of laggel ate species (106 speci es in 105 samples). Little overl ap of acti ve, unrecl ai ned, and nat ural lakes was found, but sampl es from recl ai ned I akes were scattered throughout the di stribution.

Recl ai med I ake sampl es were renoved from the anal ysis with active, unrecl ai ned, and nat ural lake DCA scores plotted (Fi gure 11). Thi s supported the previ ous differences noted between active, unrecl ai med, and nat ural I ake protozoan commini ty samples.

Table 31 shows correl ation val ues for envi ronnental parameters and factors for ordi nation axes (based on 103 samples and 495 species). Axis 1 correl ated si gnificantly with water temperatire, air temperature, ni-trate-nitrite, and ortho-phosphate. Pl ots were examined for axis 1 and nitrate-nitrite which showed this correl ation to be spuri ous largel y due to I ake GOA (new y recl ai ned) being an outlier. Renoval of this lake uould no doubt renove any si gnificant correl ation. Axis 1 correl ates weakly with ortho- phosphate (Figure 12) and does not correl ate significantly with total phosphate (Figure 13). The correl ation of orthophosphate to Axis 1 appears Iargely due to lake $\mathbf{N T}(M$ being an outlier in both cases.

DCA axis 2 was correl ated with water temperature, pH al kalinity, hardness, di ssol ved oxygen, total organi c carbon, cal ci um nagnesi um al uminum iron, total nitrogen, and $\mathrm{E} P$ ratio. From this point on, only strong correl ations were examined due to possibility of spurious rel ationships. Sample pH had the hi ghest correl ation with axis 2. Lakes GOA and GOB (newly recl ai ned) had the I owest pH (Fi gure 14). These I akes were quite different from the other Iakes in this study. A pl ot of DCA axis 2 val ues agai nst al kalinity showed that this si gnificant correl ation is I argely due to extrene val ues in Lake N (M) and an active lake HPB(B). Renoval of these Iakes nould likely alter the nat ure of the correl ation. Lake HPA, an active mine pit, had the hi ghest val ues for iron. A scatter pl ot of DCA axi s 2 and iron (Fi gure 15) shows a neak, yet real rel ationshi p bet ween these vari ables. Additionally, a pl ot of axis 2 versus ortho- phosphate shous the correl ation bet ween axis 2 and ortho- phosphate is al so due to hi gh val ues of ortho- phosphate for lake NT(M) (Figure 16). Similarly DCA axis 3 versus total phosphate shovs the distortion of the I ake di stri bution due to lake NT.

Axis 4 was significantly correl ated with many of the envi ronmental parameters, Seq, G, factor 2 and factor 3. Axis 4 and pH were negativel y correl ated (Fi gure 17). This is apparently due to Iakes GOA and GOB. If these lakes were renoved, there nould be a weak positive rel ationshi p. Si milar distortions are indicated in correl ation of axis 4 versus ammonia and nitrate-nitrite (Figures 18, 19). The rel ationship of al uminumto axis shows that the active mine sites (HPA and HPB) are outliers and that if renoved the si gni ficant correl ations uould di sappear. Sel eni um level s pl otted agai nst axis 4 shows that I akes HPB, GOA, and GOB drive the si gni ficant correl ation val ues.

Si gnificant correl ations for nutrients versus axis 4 are primarily due to outlier val ues for lakes GOA and GOB Axis 4 versus factor 2 (Figure 20, pH and al kalinity, showing that lakes GOA and GOB are outliers). Other I akes show a strong positive rel ationshi p between axis 4 and factor 2 . The weak rel ationship bet ween axis 4 to factor 3 (total phosphorus, al um num and ortho-phosphorus) is strongly influenced by lakes GOB, GOA, HPA, and HPB.

There was a strong correl ation of axis 4 with Seq. This denonstrates sone rel ationship bet ween sample location in species space and these tro variables (Fi gure 21).

For rel ationshi ps of phyt of lagel lates, correl ations are shown bet ween DCA axes and envi ronmental parameters in Table 32.

Axi s 1 correl ated with pH , al kal inity, hardness, di ssol ved oxygen, G. Seq, total phosphorus, al uni num iron, and sel eni um Strongest correl ations were bet ween axi s 1 and pH, G and Seq, al though G and Seq are hi ghl y rel ated.

Axis 2 correl ated with water and air temperat ure and lake age. Axis 3 correl ates with pH, ammia, nitrate-nitrite, total and ortho-phosphate, al umi num i ron, sel eni um age, and Seq. Axis 4 correl ates with orthophosphate onl y.

Col oni zation of Artificial Substrates

Protozoan col onization of artificial substrates was rapid, and the numbers of species found at equilibrium were generally high for nost lake types exam ned. The MacArthur- Wilson equilibrium nodel adequatel y described the col onization process in nost instances (Table 33). Where the nodel failed to account for a significant or large portion of the measured variability in species numbers over time, col oni zation was typically extremel y rapid. The rapidity of col onization is reflected in high estimates for the col oni zation rate parameter G Ti ne to 90% of equilibrium speci es nunber can be estimated by $\mathbf{t} 90 \%=2.3 / G$ In nost cases, G val ues ranged bet ween 1 and 2 i ndi cating that col oni zation equilibri um was approached at from 1 to 2 days. This pattern was nai ntai ned over both sampling periods. Speci es numbers were generally hi gher for sampl es from the Fal lioject period. The col onization nodel accounted for approxinately $30-90 \%$ of the speci es-time variability for nost sampl ed lakes.

The failure of the col oni zation model to account for a significant portion of the species-time data variability was especially apparent in Iake GB during the spring sampling and in lake GOB during the fall sampling. Both of these lakes were very turbid. Speci es numbers actually decreased after the first sampling in both lakes. the only other case of failure of the col onization nodel to adequatel y describe the col oni zation process was for lake LK during the spring sampling. Col onization in this system was extrenel y rapi d, and species numbers were near their hi ghest level after only $\mathbf{1 2} \mathbf{~ h r ~ o f ~ c o l ~ o n i z a t i o n . ~}$

Speci es numbers in lakes increased rapidly with lake age (Fi gure 22) although this rel ationship is somewhat obscured by differences in species numbers bet ween collecting periods. Differences bet ween very young lakes (e.g., GOA, GOB) were consi stent both in terns of estimates of equilibrium species nunber (Seq) and in terns of total species collected (Table 34). The exact timing of the critical attainment of microbial species equilibri umin lakes of a gi ven "age" is complicated by the preci si on of age determination. Initiation of earthnovi ng was taken as the begi nni ng of the aging process for recl ai ned lakes. Earthnoving activities vary
somewhat in duration and potential impact on reclaimed lakes but are generally limited to approximately 2 months of effort.

An estimate of the critical recovery period can be inferred from lakes studied during both collecting periods. For older lakes (i.e., those greater than 4 years) sampled during the first phase of research, equilibrium species number estimates increased by from approximately 10 100%. For example, Seq estimates for Lake 1215 increased 58.5 to 96 between spring and fall 1984. Seq's estimated for lakes Law and Brown increased from about 40 to over 80 in this period. Equilibrium species number increases for unreclaimed lakes and natural lakes were within the range for older reclaimed lakes. During the same period equilibrium species numbers increased from 38 to 70 for GIA and from 21 to 78 for GIB.

Equilibrium species numbers were consistently higher in the fall (end of wet-warm season) as compared to the spring (end of cool-dry season) for systems studied during both seasons. Estimates of colonization rate increased less consistently, but were also generally higher during the second sampling period. Increases in colonization rate reflect the increased productivity of the second sampling period, high water levels, and the higher temperatures in the systems studied.

Colonization parameters were correlated with several environmental parameters (Table 35). Those factors correlated with species numbers on artificial substrates were among factors distinguishing communities in the studied lakes. There was a strong relationship between equilibrium species number (今jeq) and two nutrient parameters $\left(\mathrm{NO}_{3} \mathrm{NO}_{2}{ }_{2} \mathrm{TPO}_{4}\right)$. In addition, there were strong negative correlations between ${ }^{2} \mathrm{Seq}$ and levels of aluminum and selenium and a strong positive correlation between $\hat{S e q}$ and CTON (total organic carbon to total inorganic nitrogen) ratio. Several additional parameters were significantly correlated with Seq, however these correlations were generally weak ($r<\sim 0.5$). There were no strong correlations with colonization rate (G).

Functional Group Analysis
A summary of the distribution of protozoan species in functional groups is shown in Table 36. Contingency table analysis of these data indicated no significant differences among lakes in functional group structure ($p>0.995$). All protozoan communities were composed primarily of bacterivores, ranging from 56 to 78% of the total number of species. The next most common functional group was the producers that made up 7 34% of the total number of species. In all cases, these two functional groups accounted for the vast majority of species.

Results of analysis of Pinkham and Pearson's (1976) coefficient of similarity are presented in Figure 23. The first lakes to be distinguished as differing in functional group structure were GOB, 1215, and GOA. Of this group, GOA and GOB are newly reclaimed lakes. Lake 1215 had extremely low calcium levels compared to all other lakes studied. A more detailed comparison of the functional group structure of these lakes in comparison with typical lakes in other categories is shown in Figure 24. Lakes of the same age were more similar to each other than lakes of different ages
(\mathbf{W} / l coxon rank sum $\mathrm{z}=2.034, \mathrm{p}=0.0419$). However, the differences were not large. The nedi an coefficient of similarity for same-age pairs was 0.62 and for differing age pairs 0.54. Both GOA and GOB had extremel y I ow speci es numbers. In contrast, Lake 1215 had the hi ghest speci es numbers of fakes in the study. This difference in total species number may be the greatest factor separating these lakes from others studi ed. Di sti nctions based on total species number are di scussed above.

Fig. 3. Discriminant analysis of Florida lakes using 18 important environmental parameters from the March 1984 study period. See Table 1 for number interpretation. This figure is a plot of canonical axis 1 and 2.

Fig. 4. Discriminant analysis of Florida lakes using 18 important environmental parameters from the March 1984 study period. See Table 1 for number interpretation. This figure is a plot of canonical axis 1 and 3 .

Fig. 5. Canonical variate analysis for all lakes using 15 important environmental parameters from Fall 1984 sampling. Dark circles = active mined pits, open circles $=$ reclaimed lakes, dark squares $=$ natural lakes, open squares $=$ unreclaimed lakes (28 observations hidden).

Fig. 6. Dendrogram of cluster analysis of pooled samples using the 96 most occurring species.

Fig. 7. Dendrogram of cluster analysis of pooled samples using the 100 species that occur in 11 to 24 of the samples.

Fig. 8. Reciprocal averaging ordination of protozoan samples (in species space) using presence/ absence data. The 96 most occurring species were used in this ordination in 49 pooled samples from the March 1984 study period.

Fig. 9。 Detrended correspondence analysis (DCA) for 103 protozoan samples (2 outliers discarded) and 495 species from Fall 1984 sampling. Dark circles $=$ active mined pits, open circles $=$ reclaimed lakes, dark squares = natural lakes, open circles = unreclaimed lakes (4 observation hidden)

Fig. 10. DCA plots of axis 1 versus axis 3 for all samples using only phytoflagellate species from Fall 1984 sampling period. Dark circles $=$ active mined pits, open circles $=$ reclaimed lakes, dark squares $=$ natural lakes, open squares $=$ unreclaimed lakes (7 observations hidden).

Fig. 11. DCA pl ots of axis 1 versus axis 2 for Fall survey without recl ai med lakes. Onl y phytoflagellates were used in this display. Dark circles = active mined pits, dark squares = natural pits, open squares = unrecl ai ned I akes (1 observation hi dden).

Fig. 12. The relationship of DCA axis 1 and ortho-phosphate in lakes from the Fall 1984 sampling. Letters identify lakes (10 observations hidden).

Fig. 13. The relationship of DCA axis 1 and total phosphate in lakes from the Fall 1984 sampling. Letters identify lakes (4 observations hidden).

Fig. 14. The relationship of DCA axis 2 and pH in lakes from the Fall 1984 sampling. Letters identify lakes (11 observations hidden).

Fig. 15. The relationship of DCA axis 2 and iron in lakes from the Fall 1984 sampling. Letters identify lakes (27 hidden observations).

Fig. 16. The relationship of DCA axis 2 and ortho-phosphate in lakes from the Fall 1984 sampling. Letters identify lakes (8 observations hidden)。

Fig. 17. The relationship of DCA axis 4 and pH in lakes from the Fall 1984 sampling. Letters identify lakes (14 observations hidden).

PLOT OF AX4天NHG Symbol is value of lake

Fig. 18. The relationship of DCA axis 4 and ammonia in lakes from the Fali 1984 sampling. Letters identify lakes (41 observations hidden).

Fig. 19. The relationship of DCA axis 4 and nitrate-nitrite in lakes from the Fall 1984 sampling. Letters identify lakes (53 observations hidden).

Fig. 20. Relationship between DCA axis 4 and factor 2 from Fall 1984 sampling. Letters identify lakes (see Table 26) (17 observations hidden).

Fig. 21. The relationship of DCA axis 4 and the estimated species equilibrium number for lakes from the Fall 1984 sampling. Letters identify lakes (33 observations hidden).

Fig. 22. The relationship of the estimated species equilibrium number to the logarithm of lake age for the Fall 1984 sampling. Letters identify lakes (0 observations hidden).

Fig. 23. Dendrogram based on matrix of Pinkham and Pearson similarity coefficients comparing distribution of protozoan species in functional groups among study lakes, Fall 1984.

Fig. 24. Distribution of protozoan species into functional groups for selected lakes from Fall 1984 sampling. Numbers represent the average number of species within a functional group for equilibrium samples.

Table 5

Mean, standard deviation, minimum and maximum values for nitrogen, phosphorus and carbon from Spring 1984 sampling. (Dash means values were below detection 1 imits).

Variable	N	mean	std. dev.	minimum	maximum
Al1					
$\mathrm{NH}_{3}(\mathrm{mg} / \mathrm{l})$	47	0.110	0.191	-	1.240
$\mathrm{NO}_{2}(\mathrm{mg} / \mathrm{l})$	49	0.042	0.109	-	0.707
$\mathrm{NO}_{3} \mathrm{NO}_{2}(\mathrm{mg} / 1)$	49	0.145	0.316	-	2.160
$\mathrm{TPO}_{4}(\mathrm{mg} / 1)$	48	0.449	0.952	-	6.130
$\mathrm{OPO}_{4}(\mathrm{mg} / \mathrm{l})$	49	0.302	0.556	-	2.020
TOC(mg/t)	50	8.908	3.154	3.496	14.471
Reclaimed					
NH_{3}	28	0.120	0.236	-	1.240
NO_{2}	29	0.061	0.137	-	0.707
$\mathrm{NO}_{3} \mathrm{NO}_{2}$	29	0.174	0.404	- 70	2.160
TPO_{4}	28	0.613	1.218	0.102	6.130
${ }^{\mathrm{OPO}} 4$	29	0.430	0.689	0.025	2.020
TOC	30	10.292	3.019	4.617	14.471
Unreclaimed					
NH_{3}	10	0.122	0.096	-	0.263
NO_{2}	10	0.004	0.006	-	0.018
$\mathrm{NO}_{3} \mathrm{NO}_{2}$	10	0.057	0.082	- 7	0.245
TPO_{4}	10	0.356	0.186	0.163	0.620
OPO_{4}	10	0.207	0.163	0.061	0.460
TOC	10	7.643	0.917	6.436	8.730
Natural					
NH_{3}	9	0.066	0.091	-	0.279
NO_{2}	10	0.026	0.036	- ${ }^{-}$	0.105
$\mathrm{NO}_{3} \mathrm{NO}_{2}$	10	0.149	0.817	0.008	0.221
TPO_{4}	10	0.081	0.064	-	0.163
OPO_{4}	10	0.028	0.026	-	0.064
TOC	10	6.020	2.558	3.496	9.144

Table 6

Mean, standard deviation, minimum and maximum values for parameters measured during Spring 1984 sampling. (Dash means values were below detection limits).

Variable	N	mean	std. dev.	minimum	maximum
ALL					
Age(yrs)	40	18.075	24.602	1.000	60.000
Air temp (${ }^{\text {C }}$)	49	21.014	3.711	13.500	29.000
Wa temp (${ }^{\circ} \mathrm{C}$)	50	21.140	1.114	19.100	24.800
pH	50	7.484	0.953	6.200	9.600
Alk ($\mathrm{mg} \mathrm{CaCO} / 1$)	50	33.674	25.478	3.500	85.800
$\operatorname{Hard}(\mathrm{mg} \mathrm{CaCO} 3 / 1)$	50	87.660	39.461	12.000	165.000
$\mathrm{DO}_{2}(\mathrm{mg} / 1)$)	50	8.530	1.639	4.600	13.100
Con(umhos CM)	50	245.800	121.640	48.000	482.000
$\mathrm{SO}_{4}(\mathrm{mg} / \mathrm{l})$	49	76.666	61.433	6.190	208.000
COD (mg/l)	48	5.198	2.190	1.660	11.100
$\mathrm{Ca}(\mathrm{mg} / 1)$	50	21.747	13.194	2.900	67.100
$\mathrm{Mg}(\mathrm{mg} / 1)$	50	7.412	3.793	0.415	13.800
$\mathrm{K}(\mathrm{mg} / 1)$	50	2.271	2.568	0.127	8.100
TSS(ug/l)	47	0.144	0.094	0.029	0.328
A1 (ug/1)	50	1115.425	3517.058	0.173	20575.000
As (ug/l)	58	4.417	3.247	-	10.200
Fe (mg/l)	50	0.163	0.187	-	0.666
Mn(mg/l)	50	0.029	0.021	-	0.077
$\mathrm{Hg}(\mathrm{ug} / 1)$	47	1.077	1.804	-	10.000
Zn (mg/1)	50	0.171	0.350	-	1.840
Se(ug/1)	50	32.740	12.805	13.200	39.800
RECLAIMED					
Age	30	4.100	2.426	1.000	7.000
Air temp	29	20.834	4.081	13.500	29.000
Wat temp	30	21.046	1.254	19.100	24.800
pH	30	7.420	1.031	6.200	9.800
Alk	30	28.556	24.463	6.200	85.800
Hard	30	91.450	49.605	12.000	165.000
DO_{2}	30	8.410	1.899	4.600	13.100
Con	30	265.100	154.232	48.000	482.000
SO_{4}	30	98.572	66.428	6.980	208.000
COD	28	5.08	2.281	1.660	11.100
Ca	30	23.428	13.974	2.900	67.100
Mg	30	6.995	4.446	0.475	13.800
K	30	1.029	0.521	0.127	1.990
TSS	27	0.159	0.110	0.029	0.328
A1	30	1756.574	4453.322	0.173	20575.000
As	28	4.207	3.795	-	10.200
Fe	30	0.233	0.197	-	0.866
Mn	30	0.029	0.217	0.002	0.077

Table 6. (con't)

Variable	N	mean	std. dev.	minimum	maximum
Hg	27	0.839	1.3371	0.0	5.950
Zn	30	0.106	0.228	-	1.810
Se	30	38.74	12.354	16.400	59.800
UNRECLAIMED					
Age	10	60.000	0.00	60.000	60.000
Air temp	10	21.350	3.916	15.000	25.500
Wa temp	10	21.380	0.862	20.000	23.000
pH	10	8.180	0.863	7.000	9.200
Alk	10	62.760	9.499	51.200	75.000
Hard	10	91.900	2.078	90.000	95.000
DO_{2}	10	8.980	1.393	7.400	11.100
Con	10	207.500	5.911	199.000	219.000
SO_{4}	9	27.262	21.597	6.190	66.900
COD	10	5.079	1.914	1.840	7.880
Ca	10	28.260	8.247	17.800	48.200
Mg	10	7.430	3.064	4.100	13.500
K	10	1.019	0.375	0.650	1.460
TSS	10	0.125	0.065	0.034	0.242
A1	10	193.110	75.414	47.00	313.000
As	10	4.895	1.612	3.280	7.370
Fe	10	0.082	0.146	-	0.487
Mn	10	0.018	0.011	0.002	0.032
Hg	10	1.188	1.397	-	4.390
Zn	10	0.231	0.572	-	1.840
Se	10	22.670	8.304	13.200	40.800
NATURAL					
Air temp	10	21.200	2.455	16.500	25.000
Wa temp	10	21.180	0.924	20.000	22.200
pH	10	6.980	0.608	6.300	7.800
Alk	10	19.940	16.694	3.500	36.500
Hard	10	72.050	14.365	57.500	89.000
DO_{2}	10	8.440	0.885	7.000	10.000
Con	10	226.200	22.034	199.000	249.000
SO_{4}	10	55.411	30.856	9.510	102.300
COD	10	4.451	2.201	1.720	7.140
Ca	10	10.191	6.760	3.560	19.000
Mg	10	8.638	1.735	5.860	10.300
K	10	7.251	0.689	6.180	8.100
TSS	10	0.124	0.065	0.0345	0.221
A1	10	114.294	85.877	7.340	249.300
As	10	4.515	2.973	0.0640	7.870
Fe	10	0.033	0.027	,	0.089
Mn	10	0.039	0.024	-	0.077
Hg	10	1.609	3.003	-	10.000
Zn	10	0.306	0.366	0.009	1.190
Se	10	24.790	5.366	17.400	35.000

Table 7
Stepwise analysis results of physico-chemical variables and nutrient values for Spring 1984 sampling using 18 environmental parameters.

Step	Variable Entered	Number In	Partfial r^{2}	$\begin{gathered} \text { F } \\ \text { Statistic } \end{gathered}$	$\begin{gathered} \text { Prob } \\ F \end{gathered}$
1	K	1	0.99	788.364	0.0001
2	HARD	2	0.99	426.713	0.0001
3	ALK*	3	0.98	320.786	0.0001
4	TOC	4	0.97	134.908	0.0001
5	As	5	0.94	57.479	0.0001
6	COND	6	0.92	41.644	0.0001
7	Se	7	0.50	3.164	0.0092
8	Fe	8	0.49	2.893	0.0157
9	DO_{2}	9	0.50	2.913	0.0159
10	SO_{4}	10	0.40	1.913	0.0968
11	Mg	11	0.40	1.913	0.0968
12	OPO_{4}	12	0.42	1.864	0.1100
13	DO_{2}	11	0.39	1.664	0.1556
14	COD	12	0.40	1.732	0.1385

*Falls below 0.10 tolerance after this point.

Table 8

Eighteen parameters that are important for separating lakes in the Spring 1984 sampling.

	Parameters of Major Interest
Potassium	Total Organic Carbon
Conductivity	Calcium
Hardness	Magnesium
pH	Total Suspended Solids
Dissolved Oxygen	Aluminum
Total Phosphate	Arsenic
Ortho-Phosphate	Iron
Sulfate	Manganese

Table 9
Canonical variate analysis for all lakes using 18 important environmental parameters from the Spring 1984 sampling.

	CAN1	CAN2	CAN3	CAN4
pH	0.0188	0.0676	-0.0394	-0.0142
ALK	0.1666	0.5051	-0.609	0.0513
HARD	0.2023	0.2370	0.5969	-0.2305
DO_{2}	-0.0073	0.0057	-0.0575	-0.0056
CON	0.1177	0.0895	0.4984	-0.2895
TPO_{4}	0.0125	-0.0100	-0.0153	0.0511
OPO_{4}	0.0183	0.0070	-0.0248	0.0354
SO_{4}	0.0386	-0.0214	0.1345	-0.0620
TOC	0.2026	-0.0410	0.2291	0.3246
Ca	0.0429	0.0300	0.0434	-0.0132
Mg	0.0013	0.0716	0.1475	-0.0786
K	-0.6110	0.0974	0.4423	0.1623
TSS	0.0152	0.0144	0.0484	-0.0075
A1.	0.0136	-0.0397	-0.0155	0.1146
As	0.0608	-0.0525	0.3546	0.3484
Fe	0.0318	-0.0597	-0.0067	0.0233
Mn	-0.0048	-0.0183	0.1021	0.0335
Se	0.0188	-0.0358	-0.0981	-0.0388

Table 10
Identificiation of lake site, code, and sumbols for Spring 1984 sampling.

Site	Code	Symbol
WRGBLSP2	GIA	0
Lake 1215	L12	1
North Triangle	NT	2
Lake Law	LL	3
Lake Brown	LB	4
Lake Arietta	LA	5
Eagle Lake	EL	6
Lake Christina	LK	7
Long Lake	LG	8
WRGBLSP6	G1B	9

-59-

Table 11
Factor analysis with varimax rotation of 18 important environmental parameters for all lakes from Spring 1984 sampling.

		ROTATED FACTOR PATTERN	
	FACTORT	FACTOR2	FACTOR3
pH	-0.00065	-0.18858	0.83975
ALK	0.37607	0.07799	0.80835
HARD	0.93906	-0.12030	0.21497
DO $_{2}$	-0.54679	-0.16279	0.37241
COND	0.91616	-0.11212	$=0.00907$
TPO $_{4}$	0.02590	0.87823	-0.09149
OPO $_{4}$	0.15570	0.90373	0.20312
SO $_{4}$	0.80483	0.00380	-0.23079
TOC	0.67578	0.46797	-0.16813
Ca	0.67519	-0.20304	0.29222
Mg	0.70649	-0.09549	0.21785
K	-0.06169	-0.21840	-0.27477
TSS	0.67621	0.09564	0.10750
A1	-0.09056	0.74905	-0.38637
As	0.62568	-0.11269	-0.56896
Fe	-0.01296	0.20875	-0.53130
Mn	0.50256	-0.30701	-0.57988
Se	-0.32977	0.62167	0.10742
	VARIANCE EXPLAINED BY EACH FACTOR		
Variability	30.3	3.15026	2.99774
explained(\%)	30.3	17.5	16.6
Cumulative		47.8	64.5
explained(\%)			

Table 12
Nutrient summary statistics for all lakes sampled in Fall 1984.

Variable	N	mean	std. dev.	minimum	maximum
$\mathrm{NH}_{3}(\mathrm{mg} / 1)$	105	0.136	0.161	0.049	1.238
$\mathrm{NO}_{3}-\mathrm{NO}_{2}(\mathrm{mg} / 1)$	105	0.099	0.132	0.050	0.841
$\mathrm{TPO}_{4}(\mathrm{mg} / 1)$	105	0.466	0.394	0.025	1.527
$\mathrm{OPO}_{4}(\mathrm{mg} / 1)$	105	0.248	0.290	0.025	1.368
$\mathrm{TOC}(\mathrm{mg} / 1)$	105	8.666	2.575	3.040	16.010
TOTN	105	0.234	0.265	0.099	1.634
NTOP	105	3.665	6.786	0.097	39.680
CTON	105	54.150	26.526	3.733	121.386

Table 13
Nutrient summary statistics for natural lakes sampled in Fall 1984.

Variable	N	mean	std. dev.	minimum	maximum
NH_{3}	15	0.096	0.045	0.049	0.192
$\mathrm{NO}_{3}-\mathrm{NO}_{2}$	15	0.063	0.037	0.050	0.188
TPO_{4}	15	0.060	0.022	0.025	0.116
OPO_{4}	15	0.029	0.016	0.025	0.089
TOC	15	7.547	2.783	3.220	10.410
TOTN	15	0.160	0.063	0.099	0.319
NTOP	15	6.169	2.826	1.382	12.760
TTON	15	52.702	27.933	17.219	105.151

Table 14
Nutrient summary statistics for active mine pits sampled in Fall 1984.

Variable	N	mean	std. dev.	minimum	maximum
NH_{3}	10	0.098	0.033	0.050	0.139
$\mathrm{NO}_{3}-\mathrm{NO}_{2}$	10	0.050	0.000	0.050	0.050
TPO_{4}	10	1.038	0.320	0.693	1.527
OPO_{4}	10	0.550	0.105	0.392	0.732
TOC	10	5.156	2.136	3.040	7.300
TOTN	10	0.148	0.033	0.100	0.189
NTOP	10	0.272	0.051	0.199	0.373
CTON	10	38.064	21.237	16.796	70.700

Table 15

Nutrient summary statistics for unreclaimed mine pit lakes sampled in Fall 1984.

Variable	N	mean	std. dev.	minimum	maximum
NH_{3}	10	0.094	0.041	0.052	0.185
$\mathrm{NO}_{3}-\mathrm{NO}_{2}$	10	0.055	0.013	0.050	0.091
TPO_{4}	10	0.369	0.161	0.142	0.611
OPO_{4}	10	0.218	0.185	0.030	0.459
TOC	10	8.642	0.943	7.190	9.940
TOTN	10	0.149	0.039	0.102	0.235
NTOP	10	2.019	1.917	0.230	5.105
CTON	10	61.629	16.098	30.596	86.373

Table 16
Nutrient summary statistics for reclaimed mine pit lakes sampled in Fall. 1984 sampling.

Variable	N	mean	std. dev.	minimum	maximum
NH_{3}	70	0.155	0.193	0.050	1.238
$\mathrm{NO}_{3}-\mathrm{NO}_{2}$	70	0.119	0.157	0.050	0.841
TPO_{4}	70	0.485	0.363	0.108	1.440
OPO_{4}	70	0.256	0.311	0.025	1.368
TOC	70	9.410	2.256	3.940	16.010
TOTN	70	0.274	0.316	0.100	1.634
NTOP	70	3.849	7.990	0.097	39.680
CTON	70	55.689	27.588	3.733	121.386

Table 17
Physico-chemical and colonization summary statistics for all lakes for Fall 1984 sampling.

Variable	N	mean	std. dev.	minimum	maximum
pH	105	7.212	1.185	4.400	9.500
Air temp.	105	24.868	2.199	21.000	31.500
Wa temp.	105	27.696	1.114	24.000	30.800
Alk	101	35.107	26.822	0.500	122.500
Hard	105	97.033	69.942	12.500	607.500
DO $_{2}$	105	7.392	1.871	0.820	12.170
Cond	105	283.935	145.762	50.000	607.500
SO		105	62.164	50.843	0.200
Ca	105	26.071	14.655	4.000	186.520
Mg	105	8.975	5.018	0.870	23.740
K	105	2.136	2.261	0.200	9.190
TSS	105	0.188	0.084	0.042	0.457
A1	105	608.370	894.336	95.200	4871.800
Fe	105	0.124	0.146	0.030	0.690
Se	105	7.562	8.864	2.000	38.770
Age	105	22.481	35.942	0.100	100.000
Seq	105	67.661	18.312	15.300	96.000
G	105	1.789	0.791	0.450	4.250

Table 18

Physico-chemical and colonization summary statistics for natural lakes for Fall 1984 sampling.

Variable	N	mean	std. dev.	minimum	maximum
pH	15	7.206	0.644	6.200	8.500
Air temp.	15	25.500	2.267	22.500	30.000
Wa temp.	15	27.653	1.435	26.000	30.000
Alk	15	27.353	17.111	4.000	44.600
Hard	15	69.306	14.088	55.000	91.200
DO $_{2}$	15	7.354	0.650	6.550	8.800
Cand	15	259.800	37.750	211.000	317.000
SO	15	37.972	15.808	10.800	54.700
Ca	15	14.216	6.902	4.750	20.500
Mg	15	9.026	3.225	4.320	11.660
K	15	7.108	1.703	4.330	9.190
TSS	15	0.159	0.035	0.110	0.240
AI	15	126.446	21.377	97.800	162.500
Fe	15	0.0076	0.094	0.030	0.340
Se	15	5.009	0.417	4.300	5.810
Age	15	100.000	0.000	100.000	100.000
Seq	15	77.060	5.114	71.000	83.100
G	15	1.300	0.635	0.450	1.880

Table 19
Physico-chemical and colonization summary statistics for active mine pits for Fall 1984 sampling.

Variable	N	mean	std. dev.	minimum	maximum
pH	10	7.990	0.728	7.200	9.100
Air temp.	10	23.800	1.932	21.000	26.500
Wa temp.	10	27.210	1.430	24.000	29.000
Alk	10	75.610	34.778	40.000	122.500
Hard	10	195.480	167.914	70.000	607.500
D0 2	10	8.506	1.859	6.400	12.170
Cond	10	393.330	215.021	180.000	607.500
SO 4	10	69.214	51.744	18.480	131.610
Ca	10	39.144	21.835	18.000	60.000
Mg	10	15.203	8.228	7.080	23.740
K	10	14.412	0.211	1.110	1.670
TSS	10	0.246	0.090	0.138	0.375
Al	10	1609.860	1456.115	176.500	3585.900
Fe	10	0.220	0.263	0.030	0.690
Se	10	21.874	16.144	5.310	38.770
Age	10	0.100	0.000	0.100	0.100
Seq	10	48.500	2.951	45.700	51.300
G	10	1.485	0.462	1.146	2.023

Table 20
Physico-chemical and colonization summary statistics for unreclaimed mine pit lakes for Fall 1984 sampling.

Variable	N	mean	std. dev.	minimum	maximum
pH	10	8.460	0.705	7.600	9.500
Air temp.	10	24.700	1.702	22.500	28.000
Wa temp.	10	28.170	0.727	27.100	29.500
Alk	10	52.770	2.53	50.000	56.200
Hard	10	88.970	12.870	72.500	103.700
DO $_{2}$	10	7.185	2.420	2.840	10.820
Cond	10	253.460	21.949	229.700	279.00
SO 4	10	21.538	18.232	3.450	42.020
Ca	10	25.775	2.209	22.000	29.000
Mg	10	7.623	1.745	5.730	9.480
K	10	1.083	0.217	0.850	1.400
TSS	10	0.170	0.053	0.118	0.312
Al	10	308.080	20.752	276.900	339.100
Fe	10	0.038	0.018	0.030	0.090
Se	10	4.261	0.742	3.290	5.430
Age	10	60.000	0.000	60.000	60.000
Seq	10	71.950	2.055	70.000	73.900
G	10	1.735	0.142	1.600	1.870

Table 21

Physico-chemical and colonization summary statistics for reclaimed mine pit lakes for Fall 1984 sampling.

Variable	N	mean	std. dev.	minimum	maximum
pH	70	6.924	1.224	4.400	9.100
Air temp.	70	24.635	2.263	21.000	31.500
Wa temp.	70	27.707	1.024	25.700	30.800
Alk	66	28.059	22.602	0.500	80.000
Hard	70	90.062	44.757	12.500	190.000
D0	70	7.271	1.942	0.820	11.620
Cond	70	277.832	153.649	50.000	590.000
SO 4	70	72.145	54.573	0.200	186.520
Ca	70	26.785	13.977	4.000	57.750
Mg	70	8.267	4.497	0.870	18.850
K	70	1.324	0.908	0.200	3.580
TSS	70	0.188	0.090	0.042	0.457
A1	70	611.467	848.479	95.200	4871.800
Fe	70	0.133	0.134	0.939	0.640
Se	70	6.537	7.111	2.000	32.520
Age	70	3.707	2.560	0.500	7.500
Seq	70	67.771	20.575	15.300	96.000
G	7.930	0.866	0.680	4.250	

Table 22
Stepwise analysis results of physico-chemical variables and nutrient values for Fall 1984 sampling using 20 environmental parameters (105 samples each).

Variable entered	Number In	Partial r^{2}	F Statistic	Prob> F
Mg	1	0.99	1355.118	0.0001
Ca	2	0.98	297.412	0.0001
Se	3	0.98	234.011	0.0001
SO_{4}	4	0.98	189.767	0.0001
OPO_{4}	5	0.97	162.190	0.0001
K	6	0.96	102.315	0.0001
Alk	7	0.88	27.501	0.0001
A1	8	0.87	25.677	0.0001
TOC	9	0.83	18.532	0.0001
COND	10	0.78	13.310	0.0001

Table 23
Stepwise analysis results of physico-chemical variables and nutrient values for Fall 1984 sampling using only 15 environmental parameters (105 samples each).

Variable entered	Number in	Partial r^{2}	$\stackrel{F}{\text { Statistic }}$	$\begin{gathered} \text { Prob }> \\ F \end{gathered}$
Mg	1	0.99	1355.118	0.0001
Ca	2	0.98	297.412	0.0001
Se	3	0.98	234.011	0.0001
SO_{4}	4	0.98	189.767	0.0001
OPO_{4}	5	0.97	162.195	0.0001
K	6	0.96	102.315	0.0001
Alk	7	0.88	27.501	0.0001
A1	8	0.87	25.677	0.0001
Cond	9	0.79	13.686	0.0001
$\mathrm{NO}_{3} \mathrm{NO}_{2}$	10	0.65	6.606	0.0001
pH	11	0.63	6.087	0.0001
TPO ${ }^{4}$	12	0.49	3.435	0.0001
TSS	13	0.42	2.520	0.0025
DO_{2}	14	0.39	2.171	0.0097

Table 24
Canonical variate analysis for all lakes (21) using 20 environmental parameters from Fall 1984 sampling.

VARIABLE	WITHIN CANONICAL STRUCTURE		
	CANI	CAN2	CAN3
Water Temp.	0.0007	0.0044	0.0075
pH	0.0324	0.1113	0.0579
Alk	0.2145	0.3497	0.2442
Hard	0.0662	0.0038	0.0523
DO_{2}	0.0045	0.0157	0.0200
Cond	0.3731	-0.178	0.030
SO_{4}	0.3050	-0.4869	-0.0096
Air Temp	-0.0068	0.0088	-0.0021
NH_{4}	-0.0005	-0.049	0.0072
$\mathrm{NO}_{3}-\mathrm{NO}_{2}$	-0.0087	-0.0370	0.0310
TPO_{4}	0.0270	0.1179	0.0518
OPO_{4}	0.0877	0.2179	-0.0271
TOC	0.0177	-0.0208	-0.0012
Ca	0.3851	-0.1522	0.387
Mg	0.6998	0.2004	-0.0306
K	0.0587	0.0664	-0.3640
TSS	0.0728	-0.0275	0.0139
A1	-0.0195	0.0317	0.0506
Fe	-0.0297	-0.0078	-0.0001
Se	0.2256	0.0768	0.3795

Table 25
Canonical variate analysis for all lakes (21) using 15 important environmental parameters from Fall 1984 sampling.

VARIABLE	WITHIN CANONICAL STRUCTURE		
	CAN1	CAN2	CAN3
pH	0.0341	-0.0916	0.0939
Alk	0.2249	-0.2676	0.3587
Hard	0.0699	0.0127	0.0529
DO. 2	0.0051	-010094	0.0248
Cond	0.3906	0.1922	-0.0294
SO_{4}	0.3198	0.4819	-0.1685
$\mathrm{NO}_{3}-\mathrm{NO}_{2}$	-0.0086	0.0461	0.0186
TPO_{4}	0.272	-0.1027	0.0967
OPO_{4}	0.0891	-0.2270	0.0580
Ca	0.4042	0.2721	0.3328
Mg	0.7435	-0.1981	0.0505
K	0.0628	-0.1721	-0.3439
TSS	0.0760	0.0327	0.0055
A. 1	-0.0201	-0.0167	0.0608
Se	0.2410	0.0405	0.3946

Table 26

Lake name, symbol, and status for all lakes sampled in Fall 1984. $A=$ active, $R=$ reclaimed, $U=$ unreclaimed, and $N=$ natural lakes.

LAKE	SYMBOL	STATUS
HPA	A	A
HPB	B	A
GOA	C	R
GOB	D	R
G1A	E	R
G1B	F	R
GTC	G	R
G2A	H	R
G2B	I	R
STB	J	R
G4A	K	R
1215	L	R
NT	M	R
LB	N	R
LL	0	R
G7	P	R
LK	Q	U
LG	R	U
EL	S	N
LS	T	N
LA	U	N

Table 27
Factor analysis with varimax rotation of 15 important environmental parameters for all lakes from Fall 1984 sampling.

	FACTORT	ROTATED FACTOR PATTERN FACTOR2	FACTOR3
pH	0.4550	0.91116	-0.01334
Alk	0.54882	0.71829	0.34683
Hard	0.82531	0.24645	0.06578
DO_{2}	0.01910	0.43315	0.02150
Cond	0.96647	0.04468	-0.09630
SO_{4}	0.85160	-0.34015	-0.14470
$\mathrm{NO}_{3}-\mathrm{NO}_{2}$	0.5900	-0.62369	0.26501
TPO_{4}	0.20379	-0.02546	0.93099
OPO_{4}	0.31681	0.21303	0.69538
Ca	0.92267	0.16189	0.07354
Mg	0.88854	0.31321	0.01359
K	0.07159	0.00002	-0.42186
TSS	0.87527	-0.02164	0.12157
A1	-0.09392	-0.35335	0.73711
Se	0.61177	0.06079	0.21393
	VARIANCE EXPLAINED BY EACH FACTOR		
Eigenvalue	5.602982	2.400547	2.304059
Variability explained (\%)	37.3	16.0	15.36
Cumulative variability explained (\%)	37.3	53.3	68.71

Species distribution and the 10 most common species found in the Spring 1984 sampling.

SPECIES DISTRIBUTION

1. CATEGORY

Total study
Only one sample
Over 10% of samples
Over 20% of samples
2. MOST COMMON SPECIES

Monas sp.
Number of Samples
-1
Cryptomonas erosa 44
Cyathomonas truncata 40
Cyclidium glaucoma 39
Chlamydomonas globosa $\quad 37$
Cinetochilium margaritaceum 37
Cryptomonas ovata 37
Acanthocystis aculeata 36
Trachelomonas volvocina $\quad 36$
Cyclidium brandoni 34

Table 29

Correlations of ordination coordinates with physico-chemical parameters and factors for Spring 1984 sampling.

	WATER TEMP*	ALK	HARD	DO_{2}	CON	NH_{3}	NO_{2}	$\mathrm{NO}_{3}-\mathrm{NO}_{2}$	TPO_{4}
X Y 0 ORD		-17		-0.398^{2}	$\ldots .2871$	$-.3711$	$-.485$		$-.379^{2}$
Y χ χ		$-.317^{1}$	$-.427^{2}$		$-.482^{2}$	$.305$	$.3351$	$.427{ }^{2}$	
X Y Y 0 ORD2 2		$-.423^{2}$	$-.401^{2}$. 292	-. $394{ }^{2}$. 413^{2}		$.33{ }^{1}$
\times ORD3	$.331{ }^{1}$		-. 401		-. 394	-. 3061	.4132 -.383		332
Y ORD3			. $464{ }^{3}$. 5093	$-.445^{2}$	$-.4793$	$-.479^{3}$	$-.527^{4}$
	OPO_{4}	SO_{4}	TOC	$\underline{\mathrm{Ca}}$	Mq	TSS	A7	As	Fe
$\begin{array}{ll}X & \text { ORDI } \\ \text { Y ORD }\end{array}$	$.346{ }^{1}$	$-.321{ }^{1}$		$-.392^{2}$	-. 314^{1}	-. $324{ }^{1}$	$566{ }^{4}$		$-.300^{1}$
\times ORD2						-. 3071			
Y ORD2				$-.351{ }^{1}$		-. 301	$.441_{4}^{2}$	$-.291^{1}$	
X X Y	$-.450^{2}$. 335^{7}		. 3381	. 335		$-.681^{4}$		
	Se	AGE	Fl	F2	F3	F4			
X ORDI									
Y ORD1	. 305		-. 323	. $478{ }^{3}$					
X ORD2						$-.299{ }^{1}$			
Y ORD2	. 454	$-.524^{3}$	-. 378	. 377					
$\begin{array}{ll}Y & 0 R 23 \\ Y & \text { ORD3 }\end{array}$	$-.342^{1}$. 3297	-. $584{ }^{4}$					

Table 29. (con't)
pH and K - no sign correlations at all.
*. $011<1<.05 ; .0011<2<.01 ; .0001<3<.001 ; \quad .0001=4$
**Ordl is a reciprocal averaging ordination using pooled presence/absence data for the 96 most occurring species (See Figure 8). Ord2 is the same using 100 species that occur in from 11 to 24 samples, excluding the most common species. Ord3 is a reciprocal averaging ordination using the number of times a protozoan occurs at a site on a day (from 0 to 4), using the 96 most common species.

Table 30

Species distribution and 10 most common species found in Fall 1984 survey. The numbers of samples refer to the number of pooled quadruplicate samples (105 total).

Species Distribution

1. CATEGORY

Total study
Numer of Species

Only one sample 892

More than 10\%345

More than 33\% 136
More than 50%. 65
2. MOST COMMON SPECIES

Cryptomonas erosa ${ }^{1}$
Number of Samples

Monas sp. ${ }^{1}$ 105 101

Bodo rostratus 100
Ctedoctema acanthocrypta 97
Chlamydomonas subasymmetrica 95
Cyathomonas truncata ${ }^{1} 93$
Rhynchomonas nasuta 93
Naegleria gruberi 91
Aspidisca costata 91
Bodo variabilis 88
${ }^{1}$ Very common in Spring survey.
-80-

Table 31
Correlations of ordination coordinates for physico-chemical parameters and factors for Fall 1984 sampling for all types of protozoans (495 species).

	WA TEMP	pH	ALK	HARD	DO_{2}	AIR TEMP	NH_{3}	$\mathrm{NO}_{3}-\mathrm{NO}_{2}$
AX1	$-.269_{2}^{2}$					$-.266^{2}$. 346
AX2	-. 2634	-. 767	$-.542^{4}$	$-.216^{4}$	$-.231{ }^{4}$			
AX4		$-.418^{4}$			$.230^{1}$		$.371^{4}$	$.711^{4}$
	TPO_{4}	OPO_{4}	TOC	Ca	Mg	Al	Fe	Se
AXI AX2 AX3 AX4		$.297^{2}$						
			0.307^{2}	-. 206	$-.322^{3}$	$.305^{2}$	$.455^{4}$	
	$-.307^{2}$		$-.269^{2}$	$-.213^{1}$		$.623{ }^{4}$		$.558{ }^{4}$
	Seq	G	TOTN	NTOP	F1	F2	F3	
AXI								
AX2 AX3			. 275	. 368				
AX4	$-.780^{4}$	$.494{ }^{4}$	$.580^{4}$.5694		$-.342^{3}$	$.476{ }^{4}$	
$1=.001<p<.05$								
$2=.0011<p<.01$								
$3=.00011<p<.001$								
$4=$	0001							

Table 32
Correlations of ordination coordinates with physico-chemical parameters and factors for Fall 1984 sampling (phytoflage1lates).

	WA TEMP	pH	ALK	HARD	DO_{2}	AIR TEMP	NH_{3}	G
AX1 AX2	. $385{ }^{4}$	$.371{ }^{4}$	$.317^{2}$	$2.16{ }^{1}$	$.309^{2}$	352^{3}		$.391{ }^{4}$
AX2 AX3 AX4		0.560^{4}				. 352	. 230	$.194{ }^{1}$
	TOTN	Fl	F2	F3	$\mathrm{NO}_{3}-\mathrm{NO}_{2}$	TPO_{4}	OPO_{4}	A1
AX1						$.247^{2}$.1931
$\begin{aligned} & \text { AX2 } \\ & \text { AX3 } \\ & \text { AX4 } \end{aligned}$	$.367^{4}$		$-.437^{4}$. 528	$.457^{4}$	$.463{ }^{4}$	$\begin{array}{r} .288_{1}^{2} \\ -.232 \end{array}$	$.439^{4}$
	Fe	Se	AGE	Seq				
AX1	$-.360^{3}$. 2421		$-.469^{4}$				
AX2 AX3	. $264{ }^{2}$	$.328{ }^{3}$	$\begin{array}{r} .2911^{2} \\ -.324^{3} \end{array}$	$-.380^{4}$				
AX4								
$1=.011<p<.05$								
$2=.001<p<.01$								
$3=.00011<p<.001$								
$4=$	0001							

Table 33
Protozoan colonization parameters for studied lakes. Estimates of equilibrium species number (Ŝeq) and colonization rate (G) are shown. Ages of lakes are for Spring 1984 (lesser value) and Fall 1984 sampling. Note: $r^{2}=$ coefficient of determination for regression, $p=s i g n i f i c a n c e,(-)$ indicates lake not sampled, NS=not significant.

Site	Age (yr)	Seq.	G	r^{2}	p
HPA	Active	45.7	2.02	0.28	<0.06
HPB	Active	51.3	1.15	0.63	<0.001
GOA	$\overline{0.5}$	38.5	2.06	0.43	<0.001
GOB	$\overline{0.5}$	15.3	4.25	0.04	>0.5 (NS)
G1A	$\begin{aligned} & 1.2 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 38.1 \\ & 70.0 \end{aligned}$	$\begin{aligned} & 0.42 \\ & 1.72 \end{aligned}$	$\begin{aligned} & 0.93 \\ & 0.75 \end{aligned}$	$\begin{aligned} & <0.001 \\ & <0.0001 \end{aligned}$
GIB	$\begin{aligned} & 0.8 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 21.3 \\ & 78.3 \end{aligned}$	$\begin{aligned} & 1.70 \\ & 0.68 \end{aligned}$	$\begin{aligned} & 0.27 \\ & 0.73 \end{aligned}$	$\begin{aligned} & >0.05 \text { (NS) } \\ & <0.0001 \end{aligned}$
GIC	$\begin{aligned} & 0.8 \\ & 1.3 \end{aligned}$	67.7	$2 . \overline{35}$	0.14	>0.05 (NS)
G2A	$\begin{aligned} & 2.9 \\ & 3.5 \end{aligned}$	57.7	$2 . \overline{77}$	0.40	<0.01
G2B	$\begin{aligned} & 1.9 \\ & 2.4 \end{aligned}$	70.5	$1 . \overline{99}$	$0 . \overline{7}$	<0.0001
STB	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} 0 \\ 58.1 \end{gathered}$	$\begin{gathered} 0 \\ 2.39 \end{gathered}$	$0 . \overline{3} 3$	<0.05
G4	$\begin{aligned} & 4.4 \\ & 4.9 \end{aligned}$	74.0	$1 . \overline{24}$	$0 . \overline{84}$	<0.0001
1215	$\begin{aligned} & 4.3 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 58.5 \\ & 96.0 \end{aligned}$	$\begin{aligned} & 0.96 \\ & 1.16 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.78 \end{aligned}$	$\begin{aligned} & <0.001 \\ & <0.0001 \end{aligned}$
NT	$\begin{aligned} & 5.7 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 60.0 \\ & 89.1 \end{aligned}$	$\begin{aligned} & 1.54 \\ & 2.20 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.49 \end{aligned}$	$\begin{aligned} & <0.01 \\ & <0.001 \end{aligned}$
G7	$\begin{aligned} & 6.7 \\ & 7.2 \end{aligned}$	70.0	$1 . \overline{5} 9$	$0 . \overline{55}$	<0.0001

Table 33 (con't $^{\prime}$)

Site	Age (yr)	Seq	G	r^{2}	p
LB	7	40.2	0.77	0.82	<0.001
	7.5	83.9	1.65	0.55	<0.0001
LL	7	42.0	1.49	0.62	<0.005
	7.5	85.7	0.97	0.78	<0.0001
LG	60	66.3	0.70	0.74	<0.005
		23.95	1.60	0.45	<0.0001
LK	60	51.5	5.14	0.02	>0.75
		70.0	1.87	0.62	<0.0001
LA	-	47.4	0.70	0.91	<0.001
	-	71.0	1.88	0.29	<0.05
EL	-	63.3	0.91	0.90	<0.001
	77.4	1.57	0.80	<0.0001	
LS	-	-	-	-	-
	-	83.1	0.45	0.75	<0.0001

Table 34
Total species number found in each of the twenty-one lakes from the Fall 1984 sampling.

Lake Code	Total species
HPA	249
HPB	246
GOA	205
GOB	112
G1A	322
G1B	344
GIC	312
G2A	306
G2B	351
STB	287
G4A	357
I215	410
NT	401
LB	361
LL	361
G7	310
LK	315
LG	338
EL	344
LS	314
LA	338

Table 35
Chemical parameters correlated with equilibrium species numbers in study lakes, Fall 1984.

Parameter	r	significance
Aluminum	-0.68	$\mathrm{p}<0.0001$
Carbon to nitrogen (CTON)	0.52	<0.0001
Nitrate-Nitrite $\left(\mathrm{NO}_{3}-\mathrm{NO}_{2}\right)$	-0.51	<0.0001
Selenium	-0.51	<0.0001

Table 36

Distribution of protozoan species into functional groups from Fall 1984 sampling. Number of species in each functional group and percent of total are recorded for each lake.

| AGE: | BACTERI-
 LAKE | VORES | PRODUCERS | NON-
 SPECIFIC | ALGI
 VORES | SAPRO-
 TROPHS | RAPTORS |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | TOTAL

Table 36 (con't)

AGE: LAKE	BACTERI- VORES	PRODUCERS	NON- SPECIFIC	ALGI- VORES	SAPRO- TROPHS	RAPTORS	TOTAL
LL	55	19	5	3	1	1	83
	66.43	23.15	6.01	3.01	0.70	0.70	
G7	51	14	2	4	0	0	71
	71.68	19.74	2.70	5.05	0.59	0.24	
>60:							
LK	51	14	3	2	1	0	70
LG	71.95	20.00	3.91	2.60	1.30	0.24	
	499	20	2	3	1	1	75
	65.05	26.61	3.01	3.90	0.78	0.67	

NATURAL:

LA	49	11	6	3	0	0	70
	70.20	16.33	8.10	4.65	0.24	0.48	
LS	51	16	4	2	1	1	74
EL	68.88	21.74	5.21	2.72	0.79	0.65	
	52	19	4	3	0	0	77
	67.06	24.05	4.98	3.36	0.11	0.45	
TOTALS:	967	275	79	53	14	9	1397
CHI-SQUARE:							

$$
x^{2}=62.0 \quad \text { d.f. }=100 \quad \text { Probability } \geq 0.995
$$

4. DI SCUSSI ON

Recovery of lake ecosystens following ming and reclanation is a compl ex process. The habitat created must have appropriate characteristics for organi smsurvi val, and there must be an adequate supply of propagul es from nearby speci es sources to effect the recovery of the bi ol ogical community (Cai rns and Dickson, 1977). For certain types of species, pl antings or pl anned introductions (such as fish stocking) may be in order. Interestingl y, al though the microbi al community (incl udi ng bacteria, al gae, and protozoa) are key medi at ors of the nutrient and carbon cycling processes, they are usually not considered for introduction.

A number of questions might be asked about the recovery process in new y created ecosystens (e.g., Bloom 1980). For purposes of this investigation, we consi dered the fol lowing:

1. How do microbi al commities differ in aginglakes?
2. What physi cal-chemi cal factors change as Iakes age?
3. What effect do changes in physi cal-chemical factors have on I ake microbi al commities?

Additional ly, a number of other important questions - not in the scope of thi s investigation - might be asked about recovery lakes. For example, do recl ai med lakes have functional attributes similar to nat ural lakes in the same area? Where do the col onizing species cone from Does wildife play a role in lake recovery such as transporting species propagules or affecting nutrient bal ances? Can the recovery process be mani pul ated to produce nore "nat ural " ecosystens?

We examined the initial questions by detailed anal ysis of the environmental and bi ol ogical data collected during the fall of 1984 when a broad range of lakes were studi ed. To exam ne the rel ationship bet ween age and bi otic and abi otic factors, we assi gned arbitrary ages to those systens whi ch we could not accuratel y date. Unrecl ai ned lakes were taken to be 60 years old, although it is probable that they are actually ol der. Natural lakes were desi gnated as 100 years ol d for conveni ence of examining the data. Placing a greater or more realistic geol ogic age on these lakes uould have resulted in extended graphic displ ays which woul d have nasked certain patterns that were apparent in the data. Activel y mined sites were desi gnated as 0.1 years such that the range of ages of lakes spanned onl y three orders of nagni tude. In general, these arbitrary ages did not result in unusual skewing of the data. Age val ues were converted to the

I ogarithm of the estimated age for purposes of displaying patterns in the data.

CHANGES IN LAKE CFEM STRY WTH AGE

Examination of water chemistry parameters reveal ed several changes during aging. It should be noted here that the number of replicate systens studi ed was not great and that a broader range of variability is likel y. Many of the recl ai ned lakes studi ed were in cl ose proximity and probably shared many characteristics due to simiar interactions bet ween water and basin material. Alternativel y, similarity of basin parent naterial for Iakes recl ai ned in the phosphate mineralized area of central Fl orida is probable. We examined several paraneters in rel ation to val ues reported by Boody et al. (1984) in a previ ous extensi ve study of recl ai ned and natural lakes in the mining regi on. In general, there was good correspondence bet ween the envi ronnental data of both studies. Si nce several of the same lakes were exam ned in both projects, comparisons of certain stable paraneters further increased confidence in the measurements made. Sone differences were noted and are detailed bel ow Many of the parameters which differed in lakes of differing ages were not significantly correl ated with age. Often, only a fewlakes showed aberrant val ues for chemical parameters neasured. However, a preponderance of the evidence, based on repeat ed sampl ing of the same lakes, suggested several important differences in young recl ai med I akes.

The pH of new y recl ai ned I akes (GOA and GOB) was I ower than that for the other lakes studi ed (Fi gure 25). This pH difference nay be rel ated to chemical weathering processes of the basin parent material and is expl ai ned further bel ow Al kalinity was correspondingly lowin new y recl ai ned lakes (Figure 26) and was al so generally high in the active mine sites (HPA, HPB). Al kalinities of several lakes were bel ow Fl orida class III water quality standards of $20 \mathrm{ng} / \mathrm{L}$. Al kal inity and pH were strongly correl ated ($\mathrm{r}=0$. 73, $\mathrm{p}<0.0001$). This rel ationshi p was not found by Boody et al. (1984) who sampl ed over all seasons.

There were strong, expected rel ationshi ps among cal ci um nagnesi um hardness, conductivity, and sulfate (all $r>0.6, p<0.001$). Only sulfate was si gnificantly rel ated to lake age, but the factors tended to separate I akes in multivariate anal yses. The rel ationship of these paraneters to age is shown in Figure 27-30. Deviation of val ues for new y recl ai ned lakes, active mine sites, and certain other lakes are obvi ous. Similar to previ ous findi ngs, cal ci um and sulfate were strongly rel ated ($r=0.78$, $\mathrm{p}<0.001$). Ve postul ated that in newly recl ai ned lakes this rel ationship might al so be invol ved in the production of low pH owing to the oxidation of pyrite, the concomitant production of sulfuric acid, the sol ubilizing of fluorapatite, and the precipitation of cal ci umsulfate (H Barwood, FIPR, cited in Boody et al., 1984). This process forces phosphoric acid into sol ution. Phosphate $\left(0 \mathrm{PO}_{4}\right)$ was only weakly correl ated with pH (r= $0.20, \mathrm{p}<0.0001$), and there was no correl ation of pH and TPO_{4}.

Pot assi um level s were hi gh (c.f. Wetzel, 1983) in nat ural lakes (Fi gure 31) but showed no rel ationship to lake age. While potassi umlevel s are sonetimes al tered due to the incorporation of potassiumin aquatic
pl ant bi onass, no such assumptions can be made for new y recl ai ned lakes where the bi ot a was very sparse.

The nost surprising rel ationshi ps bet ween lake age and chemical factors were the high level s of al umin num sel eni umin new y recl ai ned I akes and active mine sites (Fi gures 32, 33). Al umi num sol ubilization is pH dependent (Cronan and Schofiel d, 1979). Sel eni um I evel s exceeded Fl orida class I and cl ass III uater quality standards (10 and $25 \mathrm{ug} / \mathrm{L}$, respectivel y). There were strong correl ations, as previ ously noted, between al umi num and sel eni um levels and protozoan speci es numbers in lakes. Sel eni umis known to be toxic in hi gher doses, al though EPA criteria for chronic sel eni um toxicity ($35 \mathrm{ug} / \mathrm{L}$, USEPA 1983) were onl y approached in sone lakes. Our determination of sel eni um level s differs markedly from those of Boody et al. (1984). These differences nay be due to differences in anal ytical methodol ogi es.

Nitrogen nutrient val ues were generally hi ghin new y reclai ned lakes (Fi gures 34-36), al though these val ues nay have been driven nore by fertilizer runoff than by natural phenonena.

Phosphate level s showed sone rel ationship to lake age (Figures 37, 38) with high level s of total phosphate recorded in newly recl ai ned and active mine sites. Lake NT al so had high phosphate level s, al though this I ake is still part of IMC's water recircul ation system Both this study and that by Boody et al. (1984) noted I arge fluctuations in water I evel in this lake. High nitrogen level s and low ortho- phosphate level sin new y recl ai ned lakes al so are documented in large NTOP val ues (Fi gure 39).

Factors separating new y recl ai ned lakes return rapidy to level s comparable to ol der lakes. For example, el evated al umin num sel eni um level s and lower pH s were al so found in young lakes during the spring sampling periodin Iakes GA and GB. These val ues rapi dly returned to level s within the variability of other sampled lakes in the six nonth peri od bet ween samplings. Recl amation studi es for lakes recl ai med after coal mining activities show much longer chemical instabilities. For example, Friedrich (1975) esti nated that low pH in lakes recl ai ned after surface mining of coal requi red ten years to return to nornal val ues. This suggests that chemical differences in reclai ned phosphate pit lakes are transitory, al though their effect on system function has not been eval uated. Previ ous studi es in recl ai med I akes have not exam ned I akes as young as the lakes studi ed in the present research program

M CROBI AL COMMN TY - ESTI MATI ON OF LAKE RECOVERY RATE

Lakes in the phosphate mining regi on of central Fl orida were very productive in terns of protozoan speci es richness. Species numbers exceeded those previ ously determined for temperate lakes and wetlands (e.g., Pratt and Cairns, 1985; Pratt et al., in press; Henebry and Cai rns, 1984; Henebry et al., 1981) usi ng comparable collecting techniques. Total speci es numbers approached numbers collected from many more sampl es in nore heterogenous ecosystens (e. g., Pratt, 1984). The lowest val ues on total speci es collections were found at active mine sites and in new y recl ai ned laeks. It is not possible to determine if comparable species
pools are available in each ecosystem The structuring of the local com munity may be due to lack of di versity in the local speci es pool due to the failure of certain speci es to col oni ze the system or may be due to the complex suite of envi ronnental parameters affecting species abundance patterns.

Prot ozoan col oni zation in the studi ed lakes was typically rapid and resulted in large numbers of species at equilibrium Col oni zation patterns were very similar for all lakes studied, except artificial substrate col oni zati on was reduced and someti nes unpredi ctable in newly recl ai ned I akes. Col oni zati on was very rapid (c.f., Henebry and Cai rns, 1984; Henebry et al., 1981), and generally reflected the advanced trophic state (Pl afkin et al., 1980) of the area's lakes. In general, col onization was faster and resulted in greater equilibriumspecies numbers for fall collections as compared with spring.

Col oni zation in new y created lakes may have been affected by Iow l evel s of metal toxi cants. Sel eni um and al uminum evel s were consi stently hi gh in these lakes and pH s were consi stently low Protozoan col onization has been shown to be sensitive to comparative lowlevels of toxic naterials (e.g., Cairns and Pratt, 1985; Niederlehner et al., 1985; Cairns et al., 1980) and the overall interaction of these factors may have resulted in depressi on of the col oni zation response. It is apparent from the chemical sampling data that potentially toxic concentrations of naterial may occur in newly created lakes. However, this study and previ ous examination recl ai ned lakes (e.g., Boody et al., 1984) in the regi on have shown excursi ons beyond state of Fl orida water qual ity standards for several potentially toxic materials. Despite this, apparently heal thy commiti es may be found in ol der recl ai ned lakes. In this study, level s of sel eni um and al umi num decreased with lake age. There were conconitant increases in pH suggesting that recl anation activities may produce a temporary di sequilibriumin the aquatic commenty which is rapidly restored during the aging process. Documentation of lake recovery fromlow pH has recently been inferred from pal eoecol ogi cal studi es using di at ons (Fritz and Carlson, 1982).

The composition of protozoan commities based on functional group structure was similar to that of other ecosystens examined (Pratt and Cai rns, 1985) and showed that newly recl ai med lakes and active mine sites were si gni ficantly different from the ot her I akes st udi ed. The functional group structure of nost protozoan communities is renarkably similar, and differences found in the functional group structure of commities in this investi gati on were onl y obvi ous for the most and least di verse commities exam ned. However, exam nation of effects of the compl ex suite of interacting chemical factors showed good separation of non-recl ai ned lakes studied. Functional group anal ysi s added to the preponderance of evi dence i ndi cating consi stent differences between young recl ai ned I akes and other I ake types. However, ot her parameters (such as col onization parameters) may be better indicators of commity differences.

Commity structure and col onization dynamics for protozoan comminities have been previ ously rel ated to system primary productivity (Henebry et al., 1981) and have shown exceptionally good response to envi ronmental
perturbations such as nutrient loading (Cairns et al., 1979; ANSP, 1984). It should not be inferred that all commities in ol der recl ai ned and unrecl ai ned lakes are si milar to nat ural commities. The broad range of tol erance (Cair ns, 1982; Nbl and and Godjics, 1967) and the rapid turnover rate of protozoans (Schoener, 1983) make such determinations al nost im possi ble to make. However, col oni zation dynamics and commity structure are very similar in more general terns for all lakes tuo years old or ol der.

It seens clear that recl ai ned lakes bracket the variability found in nat ural I akes and ol der, unrecl ai med lakes in the mining regi on (Fi gure 40). The condition of the microbial community as determined by col onization anal ysis and exam nation of the inter-rel ation of community structure and water chemistry varies broadly anong the lakes studi ed. However, newly recl ai med lakes and, to a lesser extent the di st urbed surface water in active mine sites, are quite different chemically and biologically from other Iakes in the regi on. Recovery of a microbial commity comparable in terns of number of species, col oni zation rate, and functional group structure to those of ol der recl ai ned, unrecl ai ned, and nat ural I akes in the regi on occurs within two years of the begi nning of recl anation activity.

WATER QUALI TY CONSI DERATI ONS

As noted previ ousl y by Boody et al. (1984) and Fernald and Patton (1984), several lakes in the mining regi on exceed Fl orida water quality standards for various factor. Notably, we found several lakes with pH s bel ow standards al though this appears to be a short-lived artifact of the recl amati on process. Sel eni um l evel s were al so hi gher than standards in new y recl ai ned lakes. Several lakes had al kalinities bel ow the $20 \mathrm{ng} / \mathrm{L}$ standard. We found isol ated instances of oxygen depl etion in certain I akes (for example, G4 had di ssol ved oxygen llevel s bel ow $0.2 \mathrm{ng} / \mathrm{L}$ on one occasion). Careful water quality eval uation was not undertaken for several trace netal s, al though al umin level s were generally high.

Despite certai n water quality excursi ons, ol der recl ai ned lakes, unrecl ai med lakes, and nat ural I akes had very productive protozoan comminities. This suggests that water quality variations are too small and too inf requent to produce significant impacts in the protozoan bi ota. It should be noted that microbi al species such as protozoa respond rapidly to adverse water quality and al so recover rapidly when water quality returns to within tol erance ranges. Whether less plastic populations are affected by apparently snall water quality variations in reclai ned lakes is not known.

SUMMARY AND CONCLUSI ONS

Rul es di recting the recl anation of lakes on surface mined lands propose to create, by legislation and regul ation, alternative ecosystens (Magnuson et al., 1980). These alternative ecosystens are quite different from the origi nal terrestrial ecosystem which has been di spl aced by mining activities. It should be noted that creating alternative ecosystens differs substantially fromthe restoration of danaged systens (Bj ork, 1982).

In the former case, the components of the new ecosystem must be assenbl ed (or al lowed to assenble) such that a "normal " functioni ng system devel ops. In the latter case, many of the components of the ecosystem are al ready present but are in di sharnony. In restoration, effort must be expended to restore system function by changing abi otic conditions and/ or altering the resident bi ota (e.g., Fox et al., 1977).

The purpose of this study was to apply a si mple, direct method to the assessment of recovery in recl ai ned al ternative ecosystens. Specifically, the project was desi gned to determine microbi al col onization rates and equilibri um species numbers on artificial substrates in recl ai ned, unrecl ai med, and natural lakes; to determine the effect of physi cal and chemical factors on microbial col onization; and to estimate the rate of recovery of lakes after mining and recl amation.

Mcrobi al Community

Protozoan col onization of artificial substrates was rapid and resulted in rel ati vel y high equilibri umspeci es numbers. Recl ai ned, unrecl ai ned, and nat ural lakes studied had comparable ranges of col oni zation rates and equilibri um speci es numbers. New y recl ai ned lakes (ca. 6 mont hs ol d) had mach l ower speci es numbers than ot her I akes studi ed. Samples taken in I ate sumer-early fall (August-September) had much hi gher speci es numbers than comparable samples taken in early spring (March). Mcrobi al community col oni zation was strongly rel ated to trace el enents, especi ally al uni num and sel eni um level s in newly recl ai ned lakes.

Effects of Physi cal-Chemical Factors

Initial sampling of ten lakes in March reveal ed that nat ural lakes could be di sti ngui shed chemi cally from ot her lake types. Factor anal ysis i ndi cated I akes varied primarily according to maj or cations, and to a lesser degree, according to phosphate levels. No meani ngf ul differences in protozoan faunal composition could be inferred fromthe envi ronnent al data.

Mbre extensi ve sampling of 21 lakes in August and Septenber showed similar differentiation of lake types based on maj or ions, al though differences were less clear. Additional differences in factors were noted for pH , al kalinity, and nitrate-nitrite. Additional differences were found in a factor based on phosphate and al umi num concentrations. Separation of protozoan commity structure according to detrended correspondence anal ysi s (DCA) showed that compl ex variables based on community com position overlapped broadly anong lake types. Specific exam nation of the phytoflagel late group showed good separation of unrecl ai med and natural lakes and active mine sites. Recl ai ned lake sampl es spanned the range of variability for other lake types. Correl ation of environmental parameters to DCA axes showed that pH , al umi num and sel eni um val ues were rel ated to commity variables. Nutrient val ues were apparently of little importance in affecting commity structure, Those samples with low pH and high al umi num and sel eni um val ues were from the two nost recently recl ai ned I akes.

Exam nation of changes in important chemical factors (pH , al umi num sel eni un) showed that recl ai ned lakes ol der than approxi natel y one year were generally similar. This rapid recovery was al so reflected in microbial col onization patterns and in composition of protozoan functional groups. Mcrobi al comminities in recl ai ned lakes greater than one year old were similar in col onization dynamics and functional group composition. Recovery as neasured by microbi al commity characteristics was rapid and effective.

This investigation was not intended to make detailed examination of functional attributes of recl ai ned ecosystens. The evi dence presented here indicates that $\mathbf{m i c r o b i}$ al commuities are sensitive to unusual level s of chemical factors and recover quickly in aquatic ecosystens with high nutrient level s. This study was not desi gned to answer questions concerning the conti nued heal th and functioning of recl ai ned ecosystens. Ongoing investi gations will be needed to examine attributes of systemfunction and to verify the adequacy of changing reclanation rules in directing the devel opnent of heal thy ecosystens with qualities capable of sustaining wildife and hi gher organisns of public interest and concern.

Fig. 25. The relationship of pH to the logarithm of lake age for the Fall 1984 sampling. Letters identify lakes (33 observations hidden).

Fig. 26. The relationship of water alkalinity and the logarithm of lake age for the Fall 1984 sampling. Letters identify lakes (60 hidden observations).

Fig. 27. The relationship of calcium and the logarithm of lake age for the Fall 1984 sampling. Letters identifying lakes (52 observations hidden).

Fig. 28. The relationship of magnesium and the logarithm of lake age for the Fall 1984 sampling. Letters identify lakes (57 observations hidden).

Fig. 29. The relationship of water hardness and the logarithm of lake age for the Fall 1984 sampling. Letters identify lakes (70 observations hidden).

Fig. 30. The relationship of sulfate and the logarithm of lake age for the Fall 1984 sampling. Letters identify lakes (53 observations hidden).

Fig. 31. The relationship of potassium to the logarithm of lake age for the Fall 1984 sampling. Letters identify lakes (59 observations hidden).

Fig. 32. The relationship of aluminum to the logarithm of lake age for the Fall 1984 sampling. Letters identify lakes (64 observations hidden).

Fig. 33. The relationship of selenium to the logarithm of lake age for the Fall 1984 sampling. Letters identify lakes (63 observations hidden).

Fig. 34. The relationship of ammonia and the logarithm of lake age for the Fall 1984 sampling. Letters identify lakes (51 observations hidden).

Fig. 35. The relationship of nitrate-nitrite and the logarithm of lake age for the Fall 1984 sampling. Letters identify lakes (71 observations hidden).

Fig. 36. The relationship of total nitrogen to the logarithm of lake age for the Fall 1984 sampling. Letters identify lakes (57 observations hidden).

Fig. 37. The relationship of ortho-phosphate and the logarithm of lake age for the Fall 1984 sampling. Letters identify lakes (53 observations hidden).

Plot of tpogelage symbol is value of lake

Fig. 38. The relationship of total phosphate and the logarithm of lake age for the Fall 1984 sampling. Letters identify lakes (35 observations hidden).

PLOT OF NTOP天LAGE SYMBOL IS VALUE OF LAKE

Fig. 39. The relationship of nitrogen to phosphorus ratio to the logarithm of lake age for the Fall 1984 sampling. Letters identify lakes (60 observations hidden).

Fig. 40. The relationship of total organic carbon and the logarithm of lake age for the Fall 1984 sampling. Letters identify lakes (38 observations hidden).

Fig. 41. Relationship of equilibrium species number for protozoans on artificial substrates and lake age. Squares are for Spring 1984 sampling, circles are for Fall 1984 sampling.

LI TERATURE CI TED

Acadeny of Nat ural Sci ences of Phi I adephi a (ANSP), Ecosystem St udi es of Flint Ri ver - Lake Bl ackshear, 1983. Acadeny of Nat ural Sci ences, Phi I adel phi a, PA, 1984.

Al derson, D. 1983. Pal netto Rebel li on, Stripmining Osceol a National Forest. Si erra 68(1): 26, 28, 30, 32-33.

Aneri can Public Heal th Associ ation (APHA), Anerican Water Wbrks Associati on, and Water Pollution Control Federation. 1981. St andard Met hods for the Examination of Whter and Whst evater, 15th ed. Wishi ngton, D. C., 1134 pp.

Bj ork, S. 1972. Swedi sh I ake restoration program gets results. Anbio 1: 153-165.

Bl akel y, A F. 1973. The Fl ori da Phosphate I ndustry: A History of the Devel opnent and Use of a Vital Mneral. Werthei m Committee, Harvard Uni versity, Cambridge, MA 197 pp.

Bl oom S. A 1980. Mltivariate quantification of commenity recovery. In J. Cairns, Jr., ed. The Recovery Process in Danaged Ecosystens, $\overline{A n}$ Arbor Publ ishers, Inc., Ann Arbor, M, pp. 141-151.

Boody, O. C., IV, C. D. Pol Inan, G. H Tourtellotte, R. E. Dickson and A N Arcuri. Ecol ogi cal consi derations of recl ai med I akes in central Fl ori da' s phosphate regi on. Envi ronnent al Sci ence and Engi neeri ng, I nc., Tampa, FL, 1984.

Bui kema, A L., Jr., J. Cai rns, Jr. and W H Yongue. 1983. Correl ation bet ween the aut ot rophic index and protozoa col oni zation rates as indi cators of pol ution stress.

Cai rns, J., J r. 1965. Envi ronmental requi renent of freshwater protozoa. In Bi ol ogi cal Problens in Vhter Pollution. U. S. Dept. HEW Ci nci natti, OH Publ ication No. 999- VP- 25, pp. 48-52.
1971. Factors affecting the number of species of freshwater protozoan communities. Research Div. Mbnograph 3, Virgi ni a Polytechnic I nst. and State Uni v., Blacksburg, VA
1974. Protozoans (Protozoa), In C. W Hart and S. L. Fuller, eds. Pol Iution Ecol ogy of Freshwater Invertebrates. Academic Press, New York, pp. 1-28.

Cai rns, J., Jr. 1982. Freshwater protozoan commities, In A T. Bull and A.R.K, Watkinson, eds. M crobi al Interactions and-Commities, Vol. 1, Academi c Press, Inc., London, pp. 249-285.

Cairns, J., J r. and K. L. Di ckson. 1977. El asticity, inertia and resiIiency of water ecosystens. In R. D. Andreus, R. L. Carr, F. G bson, B. Z. Lang, R. A. Sol tero, and K. C. Suedberg, eds. Proceedi ngs of the Symposi um on Terrestrial and Aquatic Ecol ogi cal Studies of the Northwest, EWSC Press, Cheney, WA, pp. 371-381.

Cai rns, J., Jr. and M S. Henebry. 1982. Interactive and noni nteractive protozoan col oni zation processes, In J., Jr., Cairns, ed., Artificial Substrates, Ann Arbor, Science Publishers, Inc., Ann Arbor, M, pp. 23-70.

Cai rns, J., J r. and J. R. Pratt; 1985. Devel oping a sampling strategy. In J. Bares and S. Dennis, eds. Symposi um on the Rational e for Sampling and Interpretation of Ecol ogi cal Data in the Assessnent of Fresh Vater Ecosystens, Aneri can Soci ety for Testing and Materials, in press.

Cai rsn, J., J r., D. C. Kuhn and J. L. Pl af ki n. 1979. Protozoan col oni zation of artificial substrates. In R. L. Weitzel, ed. Methods and Measurenents of Periphyton comminities: A revi ew Anerican Society for Testing and Materials, Philadel phia, PA pp. 34-57.

Cai rns, J., Jr., K M Hart and M S. Henebry. 1980. The effects of a sub-l et hal dose of copper sulfate on the col oni zation rate of freshwater protozoan communities. Am Mdl. Nat. 104: 93-101.

Cai rns, J., Jr., J. R. Pratt and B. R. Ni ederl ehner. 1985. A provi si onal multi speci es toxi city test using indi genous or gani sns. J our. Testing Eval uation, in press.

Cronan, C. S. and C. L. Schofiel d. 1979. Al umi num leaching response to acid precipitation: effects on high-el evation watersheds in the Northeast. Sci ence 204: 304-306.

Draper, N and H. Smith. 1981. Applied Regressi on Anal ysi s, Wiley Intersci ence, New York.

Fernal d, E. A and D. J. Patton (eds.). Vater Resources Atlas of Florida, Florida State Uni versity, Institute of Science and Public Affairs, Tal I ahassee, FL, 1984, 291 pp.

Fox, J. L., P. L. Brezoni k, and M A Keirn. Lake Draudown as a Method of I mproving Whter Quality. U.S. Envi ronnental Protection Agency, EPA 600/ 3-77-005, Ci nci nnati, OH 1977, 93 pp.

Fritz, S. C. and R. E. Carl son. 1982. Strati graphic di at om and chemical evidence for acid strip-mine lake recovery. Water; Air, Soil Pollut. 17: 151-163.

Friedrich, G 1975. St udi es on the devel opment of spontaneous vegetation of ant hropogenic bodies of water in the area of restoration of the Rheni sh brown coal surface mining area. Bot. Jahrb. Syst. Pflanzengesch. Pflanzengeogr. 96: 71-83.

Gauch, H G , J r. ORD FLEX -- A Fl exi ble Computer Program for Four Ordi nation Techniques: Wei ghted Averages, Pol ar Ordi nation, Principal Component Anal ysis, and Reci procal Aver agi ng, Rel ease B. Ecol ogy and Systenati cs, Cornel I Uni versity, Ithaca, NY, 1977, 185 pp.

Haila, Y., I. Hanski, O. J aervi nen, and E. Rauta, 1982. I nsul ar bi ogeography: a northern European perspective. Acta Oecologi a Gener. 3: 303-318.

Hart man, D. 1983. The plan is to restore the St. Johns. Gai nesville Sun No. 217. February 8, 1983.

Hel wi g, J. and K. Council. 1979. SAS User's Guide, 1979 ed. SAS Inst., Cary, NC.

Henebry, M S. and J. Cai rns, Jr. 1979. Monitoring of stream pol Iution using protozoan commities on artificial substrates. Trans. Am M crosc. Soc. 99: 151-160.

Henebry, M S., Cairns, J., Jr., C. Schwintzer and W H Yongue, Jr. 1981. A comparison of vascular vegetation and protozoan communities in some freshuater wetl ands of northern lower Mchi gan. Hydrobiologi a, 83(3): 353-375.

Henebry, M S. and J. Cai rns, J r. 1984. Protozoan col oni zation rates and trophi c stat us of sone freshwater wetland lakes. J. Protozool., 31(3) : 456-467.

HII, M O. DECORANA - A FORTRAN Program for Detrended Correspondence Anal ysis and Reci procal Averaging. Cornel I Uni versity, Ithaca, NY, 1979.

Kaesl er, R. L., Herricks, E. E., and Crossnan, J. S. 1978. Use of indi ces of di versity and hi erarchical di versity in stream survey. In K. L. Di ckson, J. Cai rns, Jr., and R. J. Li vi ngston, eds. Bi ol ogícal Data in Water Pollution Assessment: Quantitative and Statistical Anal yses. ASTM STP 652. Anerican Soci ety for Testing and Materials, Philadel phi a, PA, pp. 92-112.

Kim J. 1975. Factor anal ysis. In N H Nie, C. H Hull, J. G Jenkins, K. Stei nbrenner and D. H. Bent; eds. Statistical Package for the Soci al Sci ences, 2nd ed., MtGraw Hill Book Co., NY, 675 pp.

MacArthur, R. H and E. O. WIIson. 1967. The equilibriumtheory of island bi ogeography, Princeton Univ. Press, Princeton, N.

Magnuson, J. J., H A Regi er, W J. Christie, and W C. Sonzogni 1980. To rehabilitate and restore Great Lakes ecosystens. In J. Cairns, Jr., ed. The Recovery Process in Danaged Ecosystens, Ann Arbor Sci ence Publ i shers, Inc., Ann Arbor, M, pp: 95-112.

Maguire, B. 1977. Commity structure of protozoans and al gae with particular emphasis oh recently col oni zed bodi es of water. In J. Cairns, Jr. ed. Aquatic Mcrobi al Commities, Garland Press, New York, pp. 355-398.

Ni ederl ehner, B. R. J. R. Pratt, A L. Bui kena, and J. Cai rns, J r. 1985. Laboratory tests eval uating the effects of cadmi um on freshwater protozoan commities. Envi ronment al Toxi col ogy and Chemistry, in press.

Nol and, L. E. 1925. Factors influenci ng the di stribution of freshwater ciliates. Ecol ogy 6: 437-452.

Nol and, L. E. and M Godjics. 1967. Ecol ogy of Free-Iiving Protozoa. In T. Cheu, ed., Research in Protozool ogy, 2. Perganon Press, Oxford, pp. 215-266.

Patrick, R., J. Cai rns, Jr. and S. S. Roback. 1967. An ecosyst enatic st udy of the fauna and flora of the Savannah Ri ver. Proc. Acad. Nat. Sci. Phila. 118: 109-407.

Pl afkin, J. L., D. L. Kuhn, J. Cairns, Jr., and W H Yongue. 1980. Protozon species accrual on artificial islands in differing lentic and wetland systens. Hydrobi ol ogi a 75: 161-178.

Pi nkham C. F. A and J. G. Pearson. 1976. Applications of a new coefficient of similarity to pollution surveys. J. Whter Pollut. Control Federation 48: 717-723.

Pratt, J. R. Protozoa Ecosystemstudi es of the Flint River and Lake Bl ackshear, 1983. Academy of Nat ural Sci ences of Philadel phi a, PA, 1984.

Pratt, J. R. and J. Cai rns, J r. 1985. Functional groups in the Prot ozoa: Rol es in differing ecosystens. J. Prot ozool. 32: 415-423.

Pratt, J. R., B. Z. Lang, K. L. Kaesl er, and J. Cai rns, Jr. 1985. Effect of seasonal change on protozoans inhabiting artificial substrates in a snall pond. Arch. fur Protistendk. In press.

SAS User's Gui de. 1984. Statistics. SAS Institute Inc., Cary, North Carol ina, 584 pp.

Schoener, T. 1983. Rate of species turnover decreases fromlower to hi gher organi sns: A revi ew of the dat a. Oi kos 41: 372-377.

Sokal, R. R. and F. J. Rohl f. Bi onetry. W H Freenan and Co., San Franci sco, CA, 1981, 776 pp.

Sramek- Husek, R. 1956. Zur bi ol ogi schen charakteristik der hoheren saprobitatsst ufen. Arch. fur Hydrobi ol . 51: 376-390.
U. S. Envi ronmental Protection Agency. 1983. Method for Chemi cal Anal ysi s of Whter and Whstes, EPA 600/4-79-020, Envi ronnental Monitoring and Support Laboratory, Ci nci nnati, OH

Wetzel, R. G 1983. Li mol ogy, Second Ed., W B. Saunders, Phi I adel phi a, PA

