Appendix A

JOSHUA AND PAYNE CREEK DRAINAGE BASINS ACCURACY ASSESSMENT, ASSOCIATED PROCESSED SATELLITE IMAGES

JOSHUA AND PAYNE CREEK DRAINAGE BASINS ACCURACY ASSESSMENT, ASSOCIATED PROCESSED SATELLITE IMAGES

CLASSIFICATION ACCURACY ASSESSMENT REPORT								
ACCURACY TOTALS								
Class Referenc		Classified	Number	Producers	Users			
Name	Totals	Totals	Correct	Accuracy	Accuracy			
NI Veg	18	17	13	72.22%	76.47%			
Citrus	15	17	15	100.00%	88.24%			
Wetland	8	4	4	50.00%	100.00%			
Urban	5	4	3	60.00%	75.00%			
Timber	1	3	1	100.00%	33.33%			
Water	0	2	0					
Crop	3	3	2	66.67%	66.67%			
Totals	50	50	38					
Overall Cla								

Table A-1. Accuracy Assessment for Joshua Creek Drainage Basin.

 Table A-2.
 Accuracy Assessment for Payne Creek Drainage Basin.

CLASSIFICATION ACCURACY ASSESSMENT REPORT								
ACCURACY TOTALS								
Class	Reference	eference Classified		Producers	Users			
Name	Totals	Totals	Correct	Accuracy	Accuracy			
NI Veg	9	9	7	77.78%	77.78%			
Citrus	3	4	3	100.00%	75.00%			
Wetland	8	4	4	50.00%	100.00%			
Urban	1	1	1	100.00%	100.00%			
Timber	1	1	0	0.00%	0.00%			
Water	0	0	0					
CSA	3	3	3	100.00%	100.00%			
Sand Tailings	1	3	1	100.00%	33.33%			
Disturbed Land	10	11	9	90.00%	81.82%			
Totals	36	36	28					
Overall Classific								

JOSHUA CREEK PROCESSED IMAGES

Figure A-1. Joshua Creek Processed Images (1985 and 1986).

Figure A-2. Joshua Creek Processed Images (1988 and 1991).

Figure A-3. Joshua Creek Processed Images (1992 and 1993).

Figure A-4. Joshua Creek Processed Images (1995 and 1996).

Figure A-5. Joshua Creek Processed Images (1998 and 1998).

PAYNE CREEK PROCESSED IMAGES

Figure A-6. Payne Creek Processed Images (1985 and 1986).

Figure A-7. Payne Creek Processed Images (1988 and 1991).

Figure A-8. Payne Creek Processed Images (1992 and 1993).

Figure A-9. Payne Creek Processed Images (1995 and 1996).

Figure A-10. Payne Creek Processed Images (1998).

Appendix B

JOSHUA AND PAYNE CREEK DRAINAGE BASINS ILLUSTRATIVE MAPS

JOSHUA AND PAYNE CREEK DRAINAGE BASINS ILLUSTRATIVE MAPS

Figure B-1. Landsat 5 TM Image for 1998 Summer with SWUCA in Green, Payne Creek Drainage Basin in Yellow and Joshua Creek Drainage Basin in White.

Figure B-2. Map of Sub-Drainage Areas Within the Payne and Joshua Creek Drainage Basins (Determined by USGS).

Figure B-3. Sub-Drainage Basins Studied Within SWUCA.

	A	В	С	D	E	F	G	н	1	J	к	L
1				DRAFT	1986 W	ater Budget						
2	Payne Creek	Rain	rain/12>ft			sqmi*640 AF	ET/EV "/season		colF*colH/10^9		RO or Streamflow	Seasonal Sum USGS Daily
3	Drainage Basin	Sum	*121*640>acre-ft			AF*43568		ET/EV /12	sum LC & ET=TOTAL		Rain Input - ETLC	daily cfs*86,400>SUM/10*9
4	Date	"/season	af*43,568/10^9 >Bcf/season	LC Type	sq miles	= LC in sq ft		gives ET/EV ft/season	LOSS in Bcf/season		Col C - Col H in	Streamflow (Bcf/season)
5	Dry'86	16.8	4.72	Pasture	47.3	1318890496.00	26	2.17	2.86	2	-1.8	1.0
6			Water In	Citrus	10.4	289988608.00	29	2.42	0.70		Total Left	Actual USGS Measured
7				Wetland	20.2	563247104.00	26	2.17	1.22			
8				Urban	1.3	36248576.00	5	0.42	0.02			
9				Timber	5.9	164512768.00	20	1.67	0.27	5	-	
10				Water	9.7	270470144.00	30	2.50	0.68			
11				CSA	7.6	211914752.00	20	1.67	0.35			
12			Dry	Sand Tailing	5.0	139417600.00	10	0.83	0.12			
13				Overburden/Mine Cuts	14.5	404311040.00	10	0.83	0.34	TOTAL LOSS =		
14				Crop	0	0.00	25	2.08	0.00	6.55		
15										Water Out		
16												
17	Wet '86	29.8	8.38	Pasture	50.0	1394176000.00	18	1.50	2.09		2.9	1.6
18			Water In	Citrus	10.0	278835200.00	18	1.50	0.42		Total Left	Actual USGS Measured
19				Wetland	21.9	610649088.00	21	1.75	1.07	<u>.</u>		
20				Urban	1.2	33460224.00	5	0.42	0.01			
21				Timber	6.1	170089472.00	18	1.50	0.26			
22			Wet	Water	10.9	303930368.00	20	1.67	0.51	-		
23				CSA	9.2	256528384.00	25	2.08	0.53	-		
24				Sand Tailing	5.5	153359360.00	10	0.83	0.13			
25				Overburden/Mine Cuts	7.8	217491456.00	10	0.83	0.18			
26				Crop	6.21	173156659.20	22	1.83	0.32	5.51		
27			1							Water Out		0
28	Joshua Creek	Rain	rain/12>ft			sqmi*640 AF	ET/EV "/season		colF*colH/10*9		RO or Streamflow	Seasonal Sum USGS Daily
29	Drainage Basin	Sum	*132*640>acre-ft			AF * 43568		ET/EV 12	sum LC & ET=TOTAL		Rain Input - ETLC	daily cfs*86,400>SUM/10*9
30	Date	"/season	at*43,568/10*9 >Bct/season	LC Type	sq miles	= LC in sq ft		gives ET/EV ft/season	LOSS in Bct/season		COLC - COLH	Streamflow (Bcf/season)
31	Dry 86	18.92	5.28	Pasture	85.74	2390733004.80	25	2.08	4.98		-1.6	1.19
32			water in	Vietland	21.10	590015283.20	21	2.25	1.33		Total Left	Actual USGS Measured
24				Webano	2.15	181521715.20	24	2.00	0.36			
35				Timber	3.73	104005529 60	22	1.92	0.04			
36				Water	0.10	104003323.00	30	2.60	0.00			
37				Crop	0	0.00	25	2.08	0.00			
38				- OP		0.00		2.00	TOTAL LOSS -	6.90		
39									1011122000	Water Out		
40	Wet '86	35.49	9.90	Pasture	81.86	2282544947 20	18	1.50	3.42		4.8	1.25
41			Water In	Citrus	20.7	577188864.00	18	1.50	0.87		Total Left	Actual USGS Measured
42				Wetland	8.14	226971852.80	21	1.75	0.40			
43				Urban	1.83	51026841.60	5	0.42	0.02			
44	Dry=Oct-May			Timber	1.54	42940620.80	18	1.50	0.06			
45	Wet=June-Sept			Water	0	0.00	20	1.67	0.00			
46				Crop	6.21	173156659.20	22	1.83	0.32			
47									TOTAL LOSS =	5.09		
48										Water Out		

Figure B-4. Example of Water Budget Spreadsheet Model (1986).

Joshua Modeled vs. Measured Streamflow ('85, '86, '88, '91, '92, '93, '95, '96, '98 Wet Seasons)

Figure B-5. Joshua Creek Scatter Diagram of Modeled Versus Measured Streamflow – Wet Season.

Joshua Modeled vs. Measured Streamflow ('85, '86, '88, '91, '92, '93, '95, '96, '98 Dry Seasons)

Figure B-6. Joshua Creek Scatter Diagram of Modeled Versus Measured Streamflow – Dry Season.

Figure B-7. Joshua Creek Scatter Diagram of Modeled Versus Measured Streamflow – Water Year.

Payne Modeled vs. Measured Streamflow ('85, '86, '88, '91, '92, '93, '95, '96, '98 Wet Seasons)

Figure B-8. Payne Creek Scatter Diagram of Modeled Versus Measured Streamflow – Wet Season.

Figure B-9. Payne Creek Scatter Diagram of Modeled Versus Measured Streamflow – Dry Season.

Payne Modeled vs. Measured Streamflow ('85, '86, '88, '91, '92, '93, '95, '96, '98 Water Years)

Figure B-10. Payne Creek Scatter Diagram of Modeled Versus Measured Streamflow – Water Year.

Figure B-11. Joshua Creek and Payne Creek Location of Rain Gauges Used in Study.

Appendix C

CUMULATIVE STREAMFLOW VERSUS RAIN DOUBLE MASS (POLYNOMIAL AND LINEAR) ANALYSIS OF THREE MAJOR RIVER BASINS

CUMULATIVE STREAMFLOW VERSUS RAIN DOUBLE MASS (POLYNOMIAL AND LINEAR) ANALYSIS OF THREE MAJOR RIVER BASINS

Figure C-1. Cumulative Withlacoochee @ Holder Streamflow Versus Rain (cfsm), 1980-2000 (Polynomial).

Figure C-2. Cumulative Alafia @ Lithia Streamflow Versus Rain (cfsm), 1980-2000 (Polynomial).

Figure C-3. Cumulative Peace @ Arcadia Streamflow Versus Rain (cfsm), 1980-2000 (Polynomial).

Figure C-4. Cumulative Withlacoochee @ Holder Streamflow Versus Rain (cfsm), 1980-2000 (Linear).

Figure C-5. Cumulative Alafia @ Lithia Streamflow Versus Rain (cfsm), 1980-2000 (Linear).

Figure C-6. Cumulative Peace @ Arcadia Streamflow Versus Rain (cfsm), 1980-2000 (Linear).

Appendix D

HISTORICAL SWUCA STREAMFLOW AND RAIN DATA AND SUPPORTING INFORMATION

HISTORICAL SWUCA STREAMFLOW AND RAIN DATA AND SUPPORTING INFORMATION

Figure D-1. Cumulative Peace @ Arcadia Streamflow Versus Rain (cfsm), 1932-1940 (Polynomial).

1932-1950 Cumulative Peace Rain vs. Cumulative Peace @ Arcadia Total Streamflow, polynomial

Figure D-2. Cumulative Peace @ Arcadia Streamflow Versus Rain (cfsm), 1932-1950 (Polynomial).

1932-1960 Cumulative Peace Rain vs. Cumulative Peace @ Arcadia Total Streamflow, polynomial

Figure D-3. Cumulative Peace @ Arcadia Streamflow Versus Rain (cfsm), 1932-1960 (Polynomial).

1932-1970 Cumulative Peace Rain vs. Cumulative Peace @ Arcadia Total Streamflow, polynomial

Figure D-4. Cumulative Peace @ Arcadia Streamflow Versus Rain (cfsm), 1932-1970 (Polynomial).

1932-1980 Cumulative Peace Rain vs. Cumulative Peace @ Arcadia Total Streamflow, polynomial

Figure D-5. Cumulative Peace @ Arcadia Streamflow Versus Rain (cfsm), 1932-1980 (Polynomial).

1932-1990 Cumulative Peace Rain vs. Cumulative Peace @ Arcadia Total Streamflow, polynomial

Figure D-6. Cumulative Peace @ Arcadia Streamflow Versus Rain (cfsm), 1932-1990 (Polynomial).

1932-2000 Cumulative Peace Rain vs. Cumulative Peace @ Arcadia Total Streamflow, polynomial

Figure D-7. Cumulative Peace @ Arcadia Streamflow Versus Rain (cfsm), 1932-2000 (Polynomial).

1932-2002 Cumulative Peace Rain vs. Cumulative Peace @ Arcadia Total Streamflow, polynomial

Figure D-8. Cumulative Peace @ Arcadia Streamflow Versus Rain (cfsm), 1932-2002 (Polynomial).

Source: Geraghty & Miller Highlands Ridge Hydrologic Investigation, Sept. 1980, prepared for the Peace River Basin Board and SWFWMD.

Source: Geraghty & Miller Highlands Ridge Hydrologic Investigation, Sept. 1980, prepared for the Peace River Basin Board and SWFWMD.

Figure D-10. Double-Mass Curve of Precipitation at Avon Park versus Water Levels in Lake Jackson, 1965 to 1975.

Source: Geraghty & Miller Highlands Ridge Hydrologic Investigation, Sept. 1980, prepared for the Peace River Basin Board and SWFWMD.

Figure D-11. Double-Mass Curve of Precipitation at DeSoto City Versus Discharge in Josephine Creek Near DeSoto City, 1965-1975.

Source: Geraghty & Miller Highlands Ridge Hydrologic Investigation, Sept. 1980, prepared for the Peace River Basin Board and SWFWMD.

Appendix E

1932-2000 PEACE RIVER AT ARCADIA RAIN VERSUS TIME ANALYSES (POLYNOMIAL)

1932-2000 PEACE RIVER AT ARCADIA RAIN VERSUS TIME ANALYSES (POLYNOMIAL)

Figure E-1. Cumulative Peace Rain (cfsm) Versus Time, 1932-1940 (Polynomial).

1932-1950 Cumulative Peace Rain vs. Time, polynomial

Figure E-2. Cumulative Peace Rain (cfsm) Versus Time, 1932-1950 (Polynomial).

Figure E-3. Cumulative Peace Rain (cfsm) Versus Time, 1932-1960 (Polynomial).

Figure E-4. Cumulative Peace Rain (cfsm) Versus Time, 1932-1970 (Polynomial).

Figure E-5. Cumulative Peace Rain (cfsm) Versus Time, 1932-1980 (Polynomial).

Figure E-6. Cumulative Peace Rain (cfsm) Versus Time, 1932-1990 (Polynomial).

Figure E-7. Cumulative Peace Rain (cfsm) Versus Time, 1932-2000 (Polynomial).

Appendix F

1932-2000 PEACE RIVER AT ARCADIA STREAMFLOW VERSUS TIME ANALYSES (POLYNOMIAL)

1932-1940 Cumulative Total Annual Peace @ Arcadia Streamflow vs. Time, polynomial

1932-2000 PEACE RIVER AT ARCADIA STREAMFLOW VERSUS TIME ANALYSES (POLYNOMIAL)

Figure F-1. Cumulative Peace Streamflow (cfsm) Versus Time, 1932-1940 (Polynomial).

1932-1950 Cumulative Total Annual Peace @ Arcadia Streamflow vs. Time, polynomial

Figure F-2. Cumulative Peace Streamflow (cfsm) Versus Time, 1932-1950 (Polynomial).

1932-1960 Cumulative Total Annual Peace @ Arcadia Streamflow vs. Time, polynomial

Figure F-3. Cumulative Peace Streamflow (cfsm) Versus Time, 1932-1960 (Polynomial).

1932-1970 Cumulative Total Annual Peace @ Arcadia Streamflow vs. Time, polynomial

Figure F-4. Cumulative Peace Streamflow (cfsm) Versus Time, 1932-1970 (Polynomial).

1932-1980 Cumulative Total Annual Peace @ Arcadia Streamflow vs. Time, polynomial

Figure F-5. Cumulative Peace Streamflow (cfsm) Versus Time, 1932-1980 (Polynomial).

1932-1990 Cumulative Total Annual Peace @ Arcadia Streamflow vs. Time, polynomial

Figure F-6. Cumulative Peace Streamflow (cfsm) Versus Time, 1932-1990 (Polynomial).

1932-2000 Cumulative Total Annual Peace @ Arcadia Streamflow vs. Time, polynomial

Figure F-7. Cumulative Peace Streamflow (cfsm) Versus Time, 1932-2000 (Polynomial).

Appendix G

1932-2000 PEACE RIVER AT ARCADIA STREAMFLOW VERSUS RAIN INCREMENTAL ANALYSES (POLYNOMIAL)

1932-2000 PEACE RIVER AT ARCADIA STREAMFLOW VERSUS RAIN INCREMENTAL ANALYSES (POLYNOMIAL)

Figure G-1. Cumulative Peace Streamflow Versus Rain (cfsm), 1932-1940 (Polynomial).

1941-1950 Cumulative Peace Rain vs. Cumulative Peace @ Arcadia Total Streamflow,

Figure G-2. Cumulative Peace Streamflow Versus Rain (cfsm), 1941-1950 (Polynomial).

1951-1960 Cumulative Peace Rain vs. Cumulative Peace @ Arcadia Total Streamflow,

Figure G-3. Cumulative Peace Streamflow Versus Rain (cfsm), 1951-1960 (Polynomial).

1961-1970 Cumulative Peace Rain vs. Cumulative Peace @ Arcadia Total Streamflow,

Figure G-4. Cumulative Peace Streamflow Versus Rain (cfsm), 1961-1970 (Polynomial).

1971-1980 Cumulative Peace Rain vs. Cumulative Peace @ Arcadia Total Streamflow,

Figure G-5. Cumulative Peace Streamflow Versus Rain (cfsm), 1971-1980 (Polynomial).

1981-1990 Cumulative Peace Rain vs. Cumulative Peace @ Arcadia Total Streamflow,

Figure G-6. Cumulative Peace Streamflow Versus Rain (cfsm), 1981-1990 (Polynomial).

1991-2000 Cumulative Peace Rain vs. Cumulative Peace @ Arcadia Total Streamflow,

Figure G-7. Cumulative Peace Streamflow Versus Rain (cfsm), 1991-2000 (Polynomial).

Appendix H

1980-2000 MAJOR BASINS AND SUB-BASINS CUMULATIVE STREAMFLOW VERSUS RAIN ANALYSES (POLYNOMIAL AND LINEAR)

1980-2000 MAJOR BASINS AND SUB-BASINS CUMULATIVE STREAMFLOW VERSUS RAIN ANALYSES (POLYNOMIAL AND LINEAR)

Figure H-1. Peace River @ Bartow Cumulative Rain Versus Streamflow (Polynomial).

Figure H-2. Peace River @ Bartow Cumulative Rain Versus Streamflow (Linear).

Figure H-3. Peace River @ Ft. Meade Cumulative Rain Versus Streamflow (Polynomial).

Figure H-4. Peace River @ Ft. Meade Cumulative Rain Versus Streamflow (Linear).

Figure H-5. Peace River @ Zolfo Springs Cumulative Rain Versus Streamflow (Polynomial).

Figure H-6. Peace River @ Zolfo Springs Cumulative Rain Versus Streamflow (Linear).

Figure H-7. Peace River @ Arcadia Cumulative Rain Versus Streamflow (Polynomial).

Figure H-8. Peace River @ Arcadia Cumulative Rain Versus Streamflow (Linear).

Figure H-9. Bowlegs Creek near Ft. Meade Cumulative Rain Versus Streamflow (Polynomial).

Cumulative Bowlegs nr Ft Meade Streamflow vs. Rain 1992-2000, Linear

Figure H-10. Bowlegs Creek near Ft. Meade Cumulative Rain Versus Streamflow (Linear).

Figure H-11. Charlie Creek near Gardner Cumulative Rain Versus Streamflow (Polynomial).

Figure H-12. Charlie Creek near Gardner Cumulative Rain Versus Streamflow (Linear).

Figure H-13. Joshua Creek @ Nocatee Cumulative Rain Versus Streamflow (Polynomial).

Figure H-14. Joshua Creek @ Nocatee Cumulative Rain Versus Streamflow (Linear).

Figure H-15. Payne Creek near Bowling Green Cumulative Rain Versus Streamflow (Polynomial).

Figure H-16. Payne Creek near Bowling Green Cumulative Rain Versus Streamflow (Linear).

Figure H-17. Upper Horse Creek nr Myakka Head Cumulative Rain Versus Streamflow (Polynomial).

Figure H-18. Upper Horse Creek nr Myakka Head Cumulative Rain Versus Streamflow (Linear).

Figure H-19. Horse Creek near Arcadia Cumulative Rain Versus Streamflow (Polynomial).

Figure H-20. Horse Creek near Arcadia Cumulative Rain Versus Streamflow (Linear).

Figure H-21. S Prong Alafia River near Lithia Cumulative Rain Versus Streamflow (Polynomial).

Figure H-22. S Prong Alafia River near Lithia Cumulative Rain Versus Streamflow (Linear).

Figure H-23. Alafia River @ Lithia Cumulative Rain Versus Streamflow (Polynomial).

Figure H-24. Alafia River @ Lithia Cumulative Rain Versus Streamflow (Linear).

Figure H-25. L Manatee River near Wimauma Cumulative Rain Versus Streamflow (Polynomial).

Figure H-26. L Manatee River near Wimauma Cumulative Rain Versus Streamflow (Linear).

Figure H-27. Manatee River near Myakka Head Cumulative Rain Versus Streamflow (Polynomial).

Figure H-28. Manatee River near Myakka Head Cumulative Rain Versus Streamflow (Linear).

Figure H-29. Myakka River near Sarasota Cumulative Rain Versus Streamflow (Polynomial).

Cumulative Myakka nr Sarasota Streamflow vs. Rain 1980-2000, Linear

Figure H-30. Myakka River near Sarasota Cumulative Rain Versus Streamflow (Linear).

Cumulative Withlacoochee @ Holder Streamflow vs. Rain 1980-2000, Polynomial

Figure H-31. Withlacoochee River @ Holder Cumulative Rain Versus Streamflow (Polynomial).

Cumulative Withlacoochee @ Holder Streamflow vs. Rain 1980-2000, Linear

Figure H-32. Withlacoochee River @ Holder Cumulative Rain Versus Streamflow (Linear).

Appendix I

1980-2000 MAJOR BASINS AND SUB-BASINS CUMULATIVE STREAMFLOW PERCENT EXCEEDS VERSUS RAIN ANALYSES (POLYNOMIAL AND LINEAR)

1980-2000 MAJOR BASINS AND SUB-BASINS CUMULATIVE STREAMFLOW PERCENT EXCEEDS VERSUS RAIN ANALYSES (POLYNOMIAL AND LINEAR)

Figure I-1. Peace River @ Bartow Cumulative Rain Versus Percent Exceeds Streamflow (Polynomial).

Peace River @ Bartow Cumulative Percent Exceeds vs. Rain Water Years 1980-2000 (cfsm)

Figure I-2. Peace River @ Bartow Cumulative Rain Versus Percent Exceeds Streamflow (Linear).

Peace River @ Ft. Meade Cumulative Percent Exceeds vs. Rain Water Years 1980-2000 (cfsm)

Figure I-3. Peace River @ Ft. Meade Cumulative Rain Versus Percent Exceeds Streamflow (Polynomial).

Peace River @ Ft. Meade Cumulative Percent Exceeds vs. Rain Water Years 1980-2000 (cfsm)

Figure I-4. Peace River @ Ft. Meade Cumulative Rain Versus Percent Exceeds Streamflow (Linear).

Peace River @ Zolfo Springs Cumulative Percent Exceeds vs. Rain Water Years 1980-2000

Figure I-5. Peace River @ Zolfo Springs Cumulative Rain Versus Percent Exceeds Streamflow (Polynomial).

Peace River @ Zolfo Springs Cumulative Percent Exceeds vs. Rain Water Years 1980-2000

Figure I-6. Peace River @ Zolfo Springs Cumulative Rain Versus Percent Exceeds Streamflow (Linear).

Figure I-7. Peace River @ Arcadia Cumulative Rain Versus Percent Exceeds Streamflow (Polynomial).

Peace River @ Arcadia Cumulative Percent Exceeds vs. Rain Water Years 1980-2000 (cfsm)

Figure I-8. Peace River @ Arcadia Cumulative Rain Versus Percent Exceeds Streamflow (Linear).

Bowlegs Creek nr Ft. Meade Cumulative Percent Exceeds vs. Rain Water Years 1992-2000 (cfsm) polynomial

Figure I-9. Bowlegs Creek @ Ft. Meade Cumulative Rain Versus Percent Exceeds Streamflow (Polynomial).

Bowlegs Creek nr Ft. Meade Cumulative Percent Exceeds vs. Rain Water Years 1992-2000

Figure I-10. Bowlegs Creek @ Ft. Meade Cumulative Rain Versus Percent Exceeds Streamflow (Linear).

Charlie Creek Cumulative Percent Exceeds vs. Rain Water Years 1980-2000 (cfsm)

Figure I-11. Charlie Creek near Gardner Cumulative Rain Versus Percent Exceeds Streamflow (Polynomial).

Figure I-12. Charlie Creek near Gardner Cumulative Rain Versus Percent Exceeds Streamflow (Linear).

Joshua Creek Cumulative Percent Exceeds vs. Rain Water Years 1980-2000 (cfsm)

Figure I-13. Joshua Creek @ Nocatee Cumulative Rain Versus Percent Exceeds Streamflow (Polynomial).

Figure I-14. Joshua Creek @ Nocatee Cumulative Rain Versus Percent Exceeds Streamflow (Linear).

Figure I-15. Payne Creek @ Bowling Green Cumulative Rain Versus Percent Exceeds Streamflow (Polynomial).

Figure I-16. Payne Creek @ Bowling Green Cumulative Rain Versus Percent Exceeds Streamflow (Linear).

Upper Horse Creek nr Myakka Head Cumulative Percent Exceeds vs. Rain Water Years 1980-

Figure I-17. Upper Horse Creek near Myakka Head Cumulative Rain Versus Percent Exceeds Streamflow (Polynomial).

Upper Horse Creek nr Myakka Head Cumulative Percent Exceeds vs. Rain Water Years 1980-

Figure I-18. Upper Horse Creek near Myakka Head Cumulative Rain Versus Percent Exceeds Streamflow (Linear).

Horse Creek nr Arcadia Cumulative Percent Exceeds vs. Rain Water Years 1980-2000 (cfsm) polynomial

Figure I-19. Horse Creek near Arcadia Cumulative Rain Versus Percent Exceeds Streamflow (Polynomial).

Horse Creek nr Arcadia Cumulative Percent Exceeds vs. Rain Water Years 1980-2000 (cfsm)

Figure I-20. Horse Creek near Arcadia Cumulative Rain Versus Percent Exceeds Streamflow (Linear).

South Prong Alafia River nr Lithia Cumulative Percent Exceeds vs. Rain Water Years 1980-

Figure I-21. S Prong Alafia River near Lithia Cumulative Rain Versus Percent Exceeds Streamflow (Polynomial).

South Prong Alafia River nr Lithia Cumulative Percent Exceeds vs. Rain Water Years 1980-

Figure I-22. S Prong Alafia River near Lithia Cumulative Rain Versus Percent Exceeds Streamflow (Linear).

Alafia River @ Lithia Cumulative Percent Exceeds vs. Rain Water Years 1980-2000 (cfsm)

Figure I-23. Alafia River @ Lithia Cumulative Rain Versus Percent Exceeds Streamflow (Polynomial).

Alafia River @ Lithia Cumulative Percent Exceeds vs. Rain Water Years 1980-2000 (cfsm)

Figure I-24. Alafia River @ Lithia Cumulative Rain Versus Percent Exceeds Streamflow (Linear).

Little Manatee River nr Wimauma Cumulative Percent Exceeds vs. Rain Water Years 1980-2000 (cfsm) polynomial

Figure I-25. Little Manatee River near Wimauma Cumulative Rain Versus Percent Exceeds Streamflow (Polynomial).

Little Manatee River nr Wimauma Cumulative Percent Exceeds vs. Rain Water Years 1980-

Figure I-26. Little Manatee River near Wimauma Cumulative Rain Versus Percent Exceeds Streamflow (Linear).

Manatee River nr Myakka Hd Cumulative Percent Exceeds vs. Rain Water Years 1980-2000

Figure I-27. Manatee River near Myakka Head Cumulative Rain Versus Percent Exceeds Streamflow (Polynomial).

Manatee River nr Myakka Hd Cumulative Percent Exceeds vs. Rain Water Years 1980-2000

Figure I-28. Manatee River near Myakka Head Cumulative Rain Versus Percent Exceeds Streamflow (Linear).

Myakka River nr Sarasota Cumulative Percent Exceeds vs. Rain Water Years 1980-2000

Figure I-29. Myakka River near Sarasota Cumulative Rain Versus Percent Exceeds Streamflow (Polynomial).

Myakka River nr Sarasota Cumulative Percent Exceeds vs. Rain Water Years 1980-2000

Figure I-30. Myakka River near Sarasota Cumulative Rain Versus Percent Exceeds Streamflow (Linear).

Withlacoochee River nr Holder Cumulative Percent Exceeds vs. Rain Water Years 1980-2000 (cfsm) polynomial

Figure I-31. Withlacoochee River near Holder Cumulative Rain Versus Percent Exceeds Streamflow (Polynomial).

Withlacoochee River nr Holder Cumulative Percent Exceeds vs. Rain Water Years 1980-2000 (cfsm) linear

Figure I-32. Withlacoochee River near Holder Cumulative Rain Versus Percent Exceeds Streamflow (Linear).