PUBLICATION NO. 05-025-100

1

CHEMISTRY OF GYPSUM POND SYSTEMS

Prepared By Tennessee Valley Authority

Under a Grant Sponsored By

AUGUST 1992

The Florida Institute of Phosphate Research was created in 1978 by the Florida Legislature (Chapter 378.101, Florida Statutes) and empowered to conduct research supportive to the responsible development of the state's phosphate resources. The Institute has targeted areas of research responsibility. These are: reclamation alternatives in mining and processing, including wetlands reclamation, phosphogypsum storage areas and phosphatic clay containment areas; methods for more efficient, economical and environmentally balanced phosphate recovery and processing; disposal and utilization of phosphatic clay; and environmental effects involving the health and welfare of the people, including those effects related to radiation and water consumption.

FIPR is located in Polk County, in the heart of the central Florida phosphate district. The Institute seeks to serve as an information center on phosphate-related topics and welcomes information requests made in person, by mail, or by telephone.

Research Staff

Executive Director Richard F. McFarlin

Research Directors

G. Michael Lloyd Jr. Gordon D. Nifong Steven G. Richardson Hassan El-Shall Robert S. Akins -Chemical Processing -Environmental Services -Reclamation -Beneficiation -Mining

Florida Institute of Phosphate Research 1855 West Main Street Bartow, Florida 33830 (863) 534-7160 Fax:(863) 534-7165

CHEMISTRY OF GYPSUM POND SYSTEMS

(FIPR Contract No. 85-05-025R)

George A. Kennedy, Principal Investigator Myra M. Soroczak, Sandra J. Meischen, Jerry D. Clayton, Jon L. Driver

TENNESSEE VALLEY AUTHORITY Muscle Shoals, Alabama

Prepared for

FLORIDA INSTITUTE OF PHOSPHATE RESEARCH 1855 West Main Street Bartow, Florida 33830

Contract Manager: G. Michael Lloyd, Jr.

August 1991

DISCLAIMER

The contents of this report are reproduced herein as received from the contractor.

The opinions, findings and conclusions expressed herein are not necessarily those of the Florida Institute of Phosphate Research, nor does mention of company names or products constitute endorsement by the Florida Institute of Phosphate Research.

TABLE OF CONTENTS

CHEMISTRY OF GYPSUM POND SYSTEMS

LIST OF TABLES	iii
EXECUTIVE SUMMARY	1
SECTION 1	
Introduction	3
Background	3
Objectives	4
Scope of work	4
SECTION 2	
Collection and Analyses of Gypsum Pond Water Samples	6
Sampling Locations and Dates	6
Chemical Analyses	6
Other Investigations	6
Collection Site Effects	8
Effects of Sample Types	8
Effects of Sample Collection Date	
Correlations Among Sample Variables	
Conclusions from Sample Collections and Analyses	16
SECTION 3	
Identifications of Solids Contained in Pond Water Sediments	
Solids in Collected Samples	
Sediments Removed November 1988	
Sediments Removed February and June 1989	21
Correlation and Factor Analyses of Sediment Data	
Conclusions from Sediment Characterizations and Analyses	29
SECTION 4	
Evaporations of Pond Water Samples	30
Initial Evaporations (Runs A - R2)	30
Evaporations at 40°C	
Mass Balance Experiments	43
Evaporations with Added Cations	44
SECTION 5	
Treatments of Gypsum Pond Water Samples	47
Treatments with Al and Ca Compounds	47
Neutralizations with Phosphate Ore Fractions	47
Treatments with Attapulgite Clay	50

SECTION 6	
Application	of Chemical Modeling Computer Programs54
WATEQ	4F54
PHREEQ	9E54
Comput	ations with Solution / Sediment Sample Data55
Comput	ations with Collected Sample Data
Estimate	s of Solubility Product Constants61
Conclus	ons from Computer Modeling Studies64
REFERENCES	
APPENDIX A.	Replicate Determinations of Gypsum Pond Water Sample Compositions A-1
APPENDIX B.	PHREEQE Program Output—Speciation Computations of Gypsum
	Pond-to-Plant Return Water SamplesB-1
APPENDIX C.	PHREEQE Program Output—Computed Saturation States of Mean
	Pond Water Sample CompositionsC-1

,

LIST OF TABLES

Table	1.	Gypsum Pond Water Sample Mean Compositions7
Table	2.	Gypsum Pond Water Sample F- and t-Tests by Types (D, R, S)9,10
Table	3.	Paired t-Tests for Gypsum Pond Water Sample Collection Groups 1 and 212
Table	4.	Correlation Coefficient Matrix for Pond Water Sample Composition Variables13
Table	5.	Factor Analysis of Gypsum Pond Water Data15
Table	6.	Characterizations of Solids Filtered from Gypsum Pond Samples June 1988
Table	7.	Characterizations of Solids Collected from Gypsum Pond Samples Nov. 198820
Table	8.	XRD Characterizations of Solids Collected from Samples Feb. 1989
Table	9.	XRD Characterizations of Solids Collected from Samples June 198923
Table	10.	Gypsum Pond Water Sample Sediment Compositions24
Table	11.	XRD Reference Patterns for Fe3(K,NH4,H)H8(PO4)6.6H2O Compounds26
Table	12.	Gypsum Pond Water Sample Sediments—Correlation Coefficients for
		Composition Variable Pairs
Table	13.	Gypsum Pond Water Sample Sediments—Factor Analysis of Chemical
		Composition Variables
Table	14.	Gypsum Pond Water Evaporations A-R2-Recovered Compositions
Table	15.	Evaporations A-R2-Comparisons of Concentration and Evaporation Ratios32
Table	16.	Characterizations of Precipitated Solids from Evaporations A-R2
Table	17.	Precipitated Solids Compositions from Evaporations A-R235
Table	18.	Precipitated Solids Molar Compositions from Evaporations A-R2
Table	19.	Gypsum Pond Water 40°C Evaporation Experiments
Table	20.	Comparisons of Concentration and Evaporation Ratios for 40°C Evaporations
Table	21.	Compositions of Solids from Pond Water Evaporations at 40°C40
Table	22.	Characterizations of Solids from Pond Water Evaporations at 40°C41
Table	23.	Gypsum Pond Water Evaporations with Added Metal Ions—Experimental
		Design and Solution Compositions
Table	24.	Gypsum Pond Water Evaporations with Added Metal Ions-Effects of Additives45
Table	25.	Gypsum Pond Water Evaporations with Added Metal Ions-Solids
		Recovered After Evaporations
Table	26.	Treatments of Gypsum Pond Water with Ca and Al Compounds48
Table	27.	Treatments of Gypsum Pond Water with Al and Ca Compounds—Concentrations
		in Filtrates and Treatment Effects
Table	28.	Treatments of Composite Pond Water Sample with Phosphate Rock Clay Fractions
Table	29.	Effects of Pond Water Treatments with Phosphate Rock Clay Fractions
Table	30.	Master Species and Complex Species in PHREEQE Chemical Model
Table	31.	Stoichiometries for Ion Activity Product Computations by "LOOK MIN" Procedure57
Table	32.	Equilibria Calculations with PHREEQE
Table	33.	PHREEQE Chemical Model—Average Species Activities in Return Water Samples
Table	34.	Summary IAP's, SI's, and Solubility Product Estimates Computed from
		Mean Pond Water Sample Compositions

CHEMISTRY OF GYPSUM POND SYSTEMS

(FIPR No. 85-05-025R)

EXECUTIVE SUMMARY

Previous studies on management of phosphoric acid gypsum ponds included attempts to describe chemical species and processes that influenced distributions of phosphorus, fluorine, and other elements in these systems. A lack of qualitative and quantitative information about the pertinent chemistry frustrated those efforts. The Florida Institute of Phosphate Research (FIPR) and the Tennessee Valley Authority (TVA) sponsored an investigation to gain information that will assist in better understanding the chemistry of gypsum pond systems.

Samples of gypsum pond return, discharge, and slurry waters were collected from operating Florida phosphoric acid producing plants in May 1988 and in December 1989. Densities, pH's, and concentrations of P_2O_5 , F, SO₄-S, Si, Al, Ca, Fe, K, Mg, Na, NH₄-N, and Cl were determined on filtered aliquots of the samples. Results showed a wide variance in pond compositions. For example, approximate ranges of measured pH's were 1.4 to 1.9, $%P_2O_5$ ranged 0.5 to 2.7, %F from 0.3 to 1.3, $%SO_4$ -S from 0.12 to about 0.3, and %Si from 0.1 to 0.3.

Inspections of sample data indicated that the operating characteristics of individual acid plants strongly influenced pond water compositions. Results from correlation and factor analyses point to feed rock source, free sulfuric acid, and the presence or absence of ancillary ammoniated phosphate production as typical influential characteristics. Sample type (return, discharge, or slurry waters) had negligible influence on variations in mean sample compositions. The only significant seasonal effects detected for samples collected in this study were the mean density and F, Si, and K concentrations were higher for the samples collected in May 1988 than for samples collected in December 1989. No large, universal variations were observed in compositions of pond water samples collected at different seasons.

Solids suspended in collected samples and sediments produced during storage contained gypsum; the alkali fluosilicates, Na₂SiF₆ and NaKSiF₆; chukhrovite, Ca₄SO₄SiAlF₁₃·nH₂O; and a complex iron phosphate, Fe₃(NH₄,K,H)H₈(PO₄)₆·6H₂O. Data evaluations suggested the latter compound was mostly, but not exclusively, present in the ammonium form.

Sample aliquots were evaporated to increase concentrations and force precipitation of the principal saturating solid phases. Phases consistently detected in solids collected after the evaporations were gypsum and the alkali fluosilicates. Attempts to induce chukhrovite precipitation by addition of Al before evaporations were not successful. Results from mass balance experiments, conducted to check for inadvertent material losses that could have influenced distribution among the solution and solid phases, showed that the amounts of P, Si, and F in solutions and solids recovered after evaporations at 60°C equaled the amounts contained in the starting solutions within experimental error.

Pond water samples were treated with a variety of Ca and Al compounds to attempt removal of F by induced precipitation of F-containing solids. As expected, common neutralizing agents such as $Ca(OH)_2$ and a clay-sized fraction from a dolomitic phosphate ore were most effective agents for reducing soluble F levels. Reactions of pond water with Al powder and AlPO₄ also reduced soluble F concentrations. Treatments with the clay-sized fraction from a nondolomitic ore, an attapulgite clay, and Al(OH)₃ did not cause reductions in soluble F concentrations.

Results from computations with the chemical equilibrium modeling program PHREEQE were in good qualitative agreement with other investigations. The P species with highest computed concentrations in pond water samples were H₃PO₄ and H₂PO₄⁻⁻, consistent with the known dissociation reactions of phosphoric acid and expected distribution of species at low pH's. The dominant F species predicted by the model computations was SiF₆⁻²; this was the only F-containing species detected by NMR spectroscopy. Saturation indices computed by PHREEQE predicted gypsum and sodium fluosilicate to be the important saturating phases, and these were the most prevalent compounds found in sediments collected from pond water samples. There was good agreement between ion activity products of saturated species and solubility product constant values obtained from other sources.

Solubility product constants were estimated for complex compounds about which no information was available in the literature. Log K is estimated to be -78.77 for chukhrovite dissolution by the reaction

 $Ca_{4}SO_{4}AlSiF_{13} \cdot 10H_{2}O = 4Ca^{+2} + Al^{+3} + 4H^{+} + H_{4}SiO_{4} + 6H_{2}O + SO_{4}^{-2} + 13F^{-}.$

Estimated Log K_{sp} values for the ammonium and potassium forms of Fe₃(NH₄,K)H₈(PO₄)₆₋₆H₂O are -140.9 and -141.6, respectively.

SECTION 1

INTRODUCTION

BACKGROUND

A wet-process phosphoric acid plant is typically operated in a closed loop with a system of drainage ditches and one or more diked ponds which serve to store and evaporatively cool the large quantity of water needed in the acid manufacturing operations. Although separate ponds might be maintained for various purposes, the overall water handling system is referred to as the gypsum pond for convenience. Since pond water is repeatedly used for scrubbing fumes generated during phosphoric acid production and for sluicing gypsum to the disposal pile, it becomes acidic and contaminated with phosphate, sulfate, fluosilicate, and other chemical species. The complex compositions of gypsum ponds and the natural variations in pond. compositions that occur at different sites and at different seasons of the year make it difficult to describe and predict chemical reactions that affect subsequent interactions of the pond with the chemical plant and the environment.

Considerable attention has been given to possible interactions of gypsum ponds with the environment. Much of this has been focused on problems related to the effects of unintentional movements of pond water constituents into the environment, such as evaporation of volatile compounds from pond surfaces or seepage of pond water into ground water. These concerns have stimulated numerous research programs to assess the impacts of gypsum ponds on the environment.

In the 1960s and 1970s emphasis was placed on determining the potential for movement of volatile fluorine compounds from gypsum ponds into the atmosphere, and several studies were conducted to measure fluorine emissions from pond surfaces. Linero and Barker [1] reviewed the field investigations of fluorine emissions that were reported by Cross and Ross [2] and by King and Farrell [3], and laboratory investigations made with pond water with added HF and H₂SiF₆ by Tatera [4]. Lehr [5] compared the fluoride vapor pressures measured by Tatera for gypsum pond water samples with added H₂SiF₆ with data from laboratory studies on reagent chemicals by Smirnova [6] and Baur [7]. The data correlated well and provided an estimate of a Henry's Law constant which related vapor pressure to the total %F in solution.

Potential movements of pond water constituents into the soil and ground water environments received less attention. Lehr inferred from past research on reactions of fertilizers with solids that pond water constituents such as phosphate, sulfate, and fluoride would be immobilized by reactions with clays and carbonates in the soil. This inference was supported by results of experimental studies by Wissa [8], Cochrane [9], and Murray [10] who found that solution phase concentrations of these species were reduced when gypsum pond waters reacted with soil minerals. Wissa and Cochrane both detected evidence of cementation in reaction zones, but the identity of the product from the cementation reaction was uncertain. The X-ray diffraction pattern reported by Cochrane and the description of the crystalline compound detected by Wissa suggest an important product may be a high fluorine-content compound, chukhrovite, which has been detected in laboratory studies on phosphoric acid systems [11].

There is relatively little information in the literature about the solubility status of gypsum ponds and the speciations of soluble species that likely influence interactions of the ponds with the environment. The emission parameters and Henry's Law constants that were estimated in studies on fluorine volatilizations described the available data assuming other solution composition variables were constant or had negligible effects. Attempts by Linero and Baker and by Lehr to describe how changes in pond chemistry might affect

elemental distributions among soluble and insoluble phases were frustrated by a lack of information about the identities of important species and their equilibrium constants. They and Boscak [12] recommended further research to obtain better information about chemical species and reactions which will determine the behaviors of pond water constituents.

Murray and Lewis [13] applied a computerized aqueous chemical equilibrium model, GEOCHEM, to evaluate chemical species in pond water samples which had been reacted with various soil minerals. They found that computerized chemical modelingwas helpful in predictingbehaviors of ions, but models showed deviations from experimentally observed behaviors. Difficulties arose from problems in correcting for ionic strength effects and the lack of thermodynamic constants in the computerized chemical model data base. Based on the species they discussed in their report, it appears that the fluosilicate ion was not included in GEOCHEM model. Thus, the results of the model computations failed to account for a major chemical constituent of the pond systems.

OBJECTIVES

The current investigation was undertaken to acquire information which will provide a better understanding of the chemistry of gypsum pond systems. Specific attention was given to solution and solid phase identities and compositions to acquire information about pond system solubilities.

Objectives were to

- identify the major solid and soluble complex species that exist in a gypsum pond system,
- · determine how changes in system compositions affect distributions of elements in the system,
- explore means for modifying natural distributions to remove some elements as low-solubility compounds, and
- determine whether existing computer software for modeling chemical equilibria provide useful information about gypsum pond systems.

SCOPE OF WORK

Samples were collected from gypsum pond systems at several operating phosphoric acid plants and analyzed to obtain information about their compositions. Statistical tests were applied to determine how sampling conditions influenced composition variations. Solids that were suspended in collected samples or were precipitated from samples during storage were analyzed and characterized to identify compounds that influenced the solubility status of gypsum ponds.

Solution phases of collected samples were evaporated to increase concentrations and force precipitation of saturating solids. Solution and solid phases were analyzed and data evaluated to investigate possible modes of elemental redistribution in pond systems. Selected samples were treated with additional amounts of key elements to investigate how variations in their concentrations affected precipitation patterns.

Exploratory experiments were conducted to examine possible ways to control pond chemistry by treating pond waters with relatively inexpensive reagents (e.g., clays, phosphate slimes, dolomite).

A computerized chemical modeling program which had been developed to calculate speciation distributions and solubility status of aqueous geochemical systems was tested with gypsum pond composition data. Concentrations of soluble complex speciations were computed to obtain information about important species that are equilibrated with saturated solutions. Results from the computations and experimental studies were used to estimate solubility product constants of compounds for which no values were found in the literature.

SECTION 2

COLLECTION AND ANALYSES OF GYPSUM POND WATER SAMPLES

SAMPLING LOCATIONS AND DATES

After discussions with FIPR personnel and Dr. Ken Parks, consultant on the project, it was decided that analytical data would be needed for three types of water samples within the chemical plant-gypsum pond systems at a variety of operating phosphoric acid production sites. It also was decided that collections at different seasons of the year would be desired to obtain information about variations in compositions that might occur with variations in climate. A number of phosphoric acid producers in Florida were contacted to request their participation in the project. Seven companies participated; most requested anonymity, so sample identifications were coded.

In May 1988 samples of pond-to-plant return water, plant-to-pond discharge water, and gypsum slurry decant or filtrate water were collected from each of six phosphoric acid producers. In December 1989 additional samples of return waters and slurry waters were collected and sent to TVA so that a comparison could be made between compositions in warm weather and cool weather conditions. Collections made for this latter group included five of the initial sites sampled in May 1988. Samples were transported to TVA's laboratories in Muscle Shoals, Alabama, for analyses and experimental research.

CHEMICAL ANALYSES

An aliquot was taken from each sample and filtered for analyses and subsequent experimentation. Densities and pH's of the aliquots were determined at ambient room temperature (25°C ± 2°C). Filtrates were analyzed for P, S (sulfate), N (ammonium), F, Cl, Na, K, Ca, Mg, Al, Fe, and Si. At several times during the course of experimental studies, additional aliquots were taken from the samples and analyzed. Analytical methods used included specific ion electrode methods (most ammonium-N and F determinations), ion chromatography (some ammonium-N, F, sulfate-S, Na, and K determinations), and inductively coupled plasma spectroscopy (P, S, and cation determinations). Average compositions for the samples are given in Table 1. Detailed results from replicate determinations performed on the samples are in Appendix A.

OTHER INVESTIGATIONS

Aliquots of the pond water samples collected in May 1988 were examined by nuclear magnetic resonance (NMR) spectroscopy. The ¹⁹F spectra were recorded at ambient temperature (about 26°C) with a JEOL FX-90Q instrument operated at 84.26 MHz. The external standard was trichlorofluoromethane. Each pond water sample gave a single ¹⁹F NMR peak at -129 ppm which is assigned to the SiF₆⁻² ion. This supports the assumption that the major F-containing species is fluosilicate. An attempt to quantitate F in the samples by NMR was not successful. Areas of the ¹⁹F peaks did not show good linear correlation with sample F concentrations. The normalized areas (peak area divided by % F) were negatively correlated with the F concentration, indicating that the relative NMR response to F decreased with increasing F concentration.

Table 1. Gypsum Pond Water Sample Mean Compositions

															Mole
Density			<					W	eight %					>	ratio
IDa	g/mL	рН	P205	F	S04S	Si	AL	Ca	Fe	к	Mg	Na	NH4N	Cl	F:Si
							•••••								
D1-1	1.032	1.58	2.02	1.06	0.299	0.269	0.0303	0.124	0.0195	0.038	0.033	0.214	0.196	0.030	5.8
D2-1	1.031	1.64	2.35	0.81	0.129	0.204	0.0134	0.161	0.0304	0.041	0.026	0.239	0.083	0.130	5.9
D3-1	1.008	1.94	0.47	0.38	0.132	0.105	0.0074	0.086	0.0080	0.017	0.008	0.117	0.064	0.010	5.4
D4-1	1.033	1.56	2.16	1.14	0.151	0.286	0.0305	0.148	0.0479	0.037	0.043	0.191	0.048	0.013	5.9
D5-1	1.016	1.81	0.96	0.64	0.127	0.178	0.0202	0.111	0.0179	0.019	0.013	0.137	0.065	0.010	5.3
D6-1	1.017	1.76	1.05	0.73	0.141	0.191	0.0063	0.123	0.0114	0.035	0.022	0.211	0.003	0.009	5.7
p1-1	1 034	1 63	2.02	1.07	0.274	0.271	0,0303	0.117	0.0220	0.042	0.034	0.216	0.169	0.012	5.8
R2-1	1.032	1.60	2.50	0.74	0.145	0.209	0.0130	0.167	0.0300	0.040	0.033	0.228	0.051	0.136	5.2
R3-1	1.009	1.88	0.48	0.41	0.139	0.108	0.0081	0.091	0.0082	0.011	0.012	0.125	0.061	0.010	5.6
R4-1	1.034	1.57	2.18	1.03	0.159	0.278	0.0176	0.127	0.0412	0.037	0.051	0.199	0.060	0.013	5.5
R5-1	1.017	1.78	0.98	0.65	0.131	0.173	0.0213	0.121	0.0173	0.019	0.013	0.157	0.056	0.007	5.6
R6-1	1.018	1.68	1.12	0.72	0.138	0.199	0.0119	0.132	0.0116	0.035	0.027	0.208	0.004	0.007	5.3
R1-2	1.030	1.68	2.31	0.99	0.259	0.235	0.0272	0.125	0.0188	0.031	0.038	0.220	0.198	0.014	6.2
R3-2	1.003	1.93	0.46	0.32	0.137	0.086	0.0069	0.088	0.0076	0.011	0.010	0.114	0.049	0.012	5.5
R4-2	1.023	1.60	2.04	1.02	0.177	0.230	0.0256	0.135	0.0324	0.030	0.041	0.192	0.048	0.003	6.6
R5-2	1.009	1.66	1.17	0.55	0.170	0.132	0.0202	0.116	0.0153	0.013	0.018	0.136	0.048	0.003	6.2
R6-2	1.016	1.69	1.40	0.64	0.162	0.167	0.0120	0.129	0.0143	0.030	0.027	0.217	0.002	0.004	5.7
R7-2	1.027	1.36	2.13	1.34	0.214	0.345	0.0292	0.185	0.0364	0.030	0.032	0.190	0.008	0.013	5.7
c1-1	1 07/	1 4/	2 17	1 06	0 200	0 266	0 03/1	0 120	0 0258	0 044	0.033	0 217	£ 227	0 010	5.9
51-1	1 030	1.04	2.17	0.71	0.270	0.200	0.0041	0.162	0.0230	0.044	0.028	0.235	0.038	0.113	5.5
SZ 1	1 000	1 88	0 53	0.58	0.150	0 137	0.00.84	0 084	0 0101	0.018	0.007	0.199	0.061	0.010	6.3
52 1	1 041	1 58	2 74	1 10	n 176	0.280	0.0223	0.144	0.0562	0.040	0.052	0.212	0.059	0.012	5.8
\$5-1	1 021	1 75	1 16	0.88	0.157	0.201	0.0226	0.108	0.0207	0.030	0.015	0.215	0.132	0.007	6.5
s6-1	1.016	1.87	1.25	0.47	0.140	0.118	0.0086	0.103	0.0089	0.038	0.022	0.218	0.004	0.007	5.9
s1-2	1.033	1.66	2.57	1.04	0.241	0.223	0.0430	0.133	0.0276	0.025	0.049	0.224	0.205	0.012	6.9
s3-2	1.007	1.94	0.51	0.42	0.128	0.117	0.0056	0.095	0.0076	0.018	0.009	0.178	0.050	0.012	5.3
s4-2	1.022	1.60	1.89	1.03	0.179	0,250	0.0308	0.155	0.0312	0.020	0.039	0.185	0.049	0.001	6.1
s5-2	1.020	1.75	1.48	0.72	0.152	0.160	0.0195	0.141	0.0187	0.014	0.023	0.222	0.050	0.004	6.7
s6-2	1.017	1.77	1.60	0.62	0.121	0.154	0.0136	0.144	0.0221	0.024	0.034	0.237	0.001	0.004	6.0
s7-2	1.032	1.37	2.29	1.35	0.201	0.322	0.0382	0.187	0.0431	0.033	0.036	0.195	0.008	0.014	6.2

^a Sample ID code = "AB-C", where

A = Sample type: R = Return from pond, D = Discharge to pond, S = Slurry decant or filtrate;

B = Collection site number, 1 through 7; and

C = Collection group: 1 = May 1988 and 2 = December 1989.

Pond water aliquots also were examined by Fourier transform infrared (FTIR) spectroscopy. Spectra were recorded at ambient temperature with a Nicolet 60SX instrument operated at 4 cm⁻¹ resolution. Samples were contained in a Spectrotech CIRCLE cell; a cell containing deionized water was the background reference. All spectra had absorbance bands in the region from 1320 to 845 cm⁻¹ which are assigned to vibrations of orthophosphate species. The summed area of absorbance peaks in the region from 1320 to 845 cm⁻¹ which are assigned to scatter that increased with increasing P₂O₅ concentration; however there was a moderate amount of scatter that increased with increasing P₂O₅ concentrations. The absorbance band at 1000 cm⁻¹, which is assigned to a P-O stretch, showed less variation from sample to sample than did other bands, and the area of the 1000 cm⁻¹ peak showed better correlation with concentration than did the area of the total IR absorbing region.

COLLECTION SITE EFFECTS

Inspections of the compositions in Table 1 show relatively large variations among compositions of samples collected at different acid plants. This is attributed to differences in operating practices involving fluosilicate recovery or co-production of ammonium phosphate fertilizers that occurred at the different plants. These practices obviously influence the quantities of materials passed into the pond systems and the resultant compositions of the pond water samples.

EFFECTS OF SAMPLE TYPES

The sample collection scheme included two pond inputs (gypsum slurry and plant discharge waters) and one output (return water) to provide data for investigating whether significant changes in composition could be detected at opposing ends of the material flow through the pond system. The composition data were grouped according to sample type and means and variances for the groups were calculated. Evaluations with the Student t Test for means and the F Test for variances were made to test hypotheses that the means and variances for the data pairs return-discharge, return-slurry, and discharge-slurry were equal. Results from these tests are tallied in Table 2.

Calculated F and t values were compared with values in standard tables of the F statistic and the t statistic to determine whether values from the gypsum pond samples showed significant deviations from values that would be expected from random variations in a normally distributed data set. All comparisons except two gave t and F values that were within ranges that would be expected for groups with equal means and variances. The two deviant comparisons both involved Na concentrations in slurry water samples. Therefore, except for Na, the hypothesis that compositions of the discharge, return, and slurry water samples are equal is retained.

Table 2. Gypsum Pond Water Sample F- and t-Tests by Types (D, R, S)^a

Sample Group Comparisons

					D to R		D to	o s	R to S	
Variable		No. Cases	Mean	Standard Deviation	F value	t value	F value	t value	F value	t value
Density	Type = D	6	1.023	0.011	1.02	0.35	1.00 -	-0.13	1.02 -	-0.58
_	Type = R	12	1.021	0.011						
	Type = S	12	1.024	0.011						
Нq	Type = D	6	1.715	0.148	1.00	0.58	1.11	0.03	1.10 -	-0.66
-	Type = R	12	1.672	0.148						
	Type = S	12	1.713	0.156				•		
P205	Type = D	6	1.502	0.772	1.16	-0.17	1.08 -	-0.54	1.07 -	-0.46
	Type = R	12	1.566	0.719						
	Type = S	12	1.703	0.744						
F	Type = D	6	0.793	0.279	1.17	0.02	1.06 -	-0.27	1.10 -	-0.35
	Type $= R$	12	0.790	0.302						
	Type = S	12	0.832	0.288						
S04S	Type = D	6	0.163	0.067	1.92	-0.45	1.76 -	-0.31	1.09	0.17
	Type = R	12	0.175	0.048						
	Type = S	12	0.172	0.051						
Si	Type = D	6	0.206	0.066	1.31	0.08	1.05	0.12	1.24	0.04
	Type = R	12	0.203	0.075						
	Type = S	12	0.202	0.067						
Al	Type = D	6	0.018	0.011	1.71	-0.13	1.40 -	-0.55	2.39 -	-0.63
	Type = R	12	0.019	0.008						
	Type = S	12	0.021	0.013						
Ca	Type = D	6	0.126	0.027	1.04	-0.17	1.29 -	-0.40	1.24 -	-0.31
	Type = R	12	0.128	0.027						
	Type = S	12	0.131	0.030						
Fe	Type = D	6	0.023	0.015	1.70	0.20	1.04 -	-0.40	1.63 -	-0.79
	Type = R	12	0.021	0.011						
	Type = S	12	0.025	0.014						

Table 2 (continued)

						Comparisons	: D	to R	D to S	R to S
Variable				No. Cases	Mean	Standard Deviation	F value	t value	F t value value	F t value value
						· ·				
к	Type	=	D	6	0.031	0.010	1.15	0.69	1.01 0.47	1.17 -0.30
	Туре	Ŧ	R	12	0.027	0.011				
	Туре	=	S	12	0.029	0.010				
Mg	Туре	=	D	6	0.024	0.013	1.02	-0.60	1.26 -0.68	1.28 -0.17
-	Type	=	R	12	0.028	0.013				
	Туре	=	S	12	0.029	0.014				
Na	Туре	=	D	6	0.185	0.048	1.42	0.06	6.59 -1.72	4.64 -2.19
	Туре	=	R	12	0.184	0.040				
	Туре	=	S	12	0.211	0.019				
NH4N	Туре		D	6	0.077	0.065	1.13	0.44	1.35 0.08	1.53 -0.39
	Туре	=	R	12	0.063	0.061				
	Туре	=	S	12	0.074	0.075				
Cl	Туре	=	D	6	0.034	0.048	1.68	0.70	2.47 0.90	1.47 0.17
	Туре	=	R	12	0.020	0.037				
	Туре	-	S	12	0.017	0.030				
					Critic	al values:	D	to R	D to S	R to S
						t0.025	:	2.12	2.12	2.07
						t0.050		1.75	1.75	1.72
						F0.05		3.00	3.00	2.69

a Types: D = Discharge plant-to-pond

R = Return pond-to-plant

S = Slurry filtrate or decant

In considering the Na concentrations, the t test results indicated that the mean Na concentration for the discharge samples exceeded that for the slurry sample group at the 90% significance level, and the mean Na concentration for the return water samples exceeded that for the slurry water samples at the 95% significance level. Results from the F tests showed that variances in Na data for D-S and R-S pairings exceeded statistically expected values at the 95% confidence level. The mean Na concentration in the group of slurry water samples was about 0.21%, and mean concentrations for the return and discharge water samples were each about 0.18%. The standard deviation for the slurry water data (about 0.02) was about one-half that of either of the other two groups (about 0.04). These differences are relatively small when compared with the variations in data for other groupings of composition-sample type data. Thus, the "significant" differences in Na concentration data may be due more to a happenstance of relatively low scatter in analytical data than to a chemical phenomenon.

EFFECTS OF SAMPLE COLLECTION DATE

Evaluations to detect whether sample compositions varied according to the time of collection were made with data for which the same type sample had been collected from the same plant sites in May 1988 and in December 1989. These ten pairs, listed in Table 3, were evaluated with the Paired t Test method to determine whether mean differences between data for the May 1988 samples (Group 1) and the December 1989 samples (Group 2) showed significant deviations from zero. Calculated t statistics for differences are given at the bottom of Table 3. The critical t values which are shown are the extreme values that would be expected at several levels of significance if collection time had no influence on the variables and differences in means were solely due to random variations.

Calculated t values for differences in means of Si and K concentrations between the groups exceeded the value expected for a normal distribution at the 99% significance level. Sample densities and Ca concentrations also were influenced by collection time; the calculated t values were outside the expected range at the 95% significance level. Similarly, the t value for the mean difference in F concentrations exceeded the critical value at the 90% significance level. Therefore, the hypothesis that there is no significant difference in means for these variables is rejected. The mean density and the mean F, Si, and K concentrations were higher for samples collected in May 1988 than for samples collected in December 1989, and the mean Ca concentration was lower for the May 1988 samples than for the December 1989 samples.

CORRELATIONS AMONG SAMPLE VARIABLES

Sample composition data were subjected to analyses with the correlation procedure of the SPSS/PC+ software package to examine relationships among the pond water composition variables. Correlation coefficients computed for pairs of variables Density, pH, P₂O₅, F, etc. are listed in Table 4. Coefficients marked with "*" and "**" are highly significant; the probabilities are less than 0.01 and 0.001, respectively, that coefficients with these values would be found by random selection from uncorrelated data. Inspection of Table 4 shows significant correlations among several variables. Chloride is conspicuous by its absence of significant correlation with any other variable. Correlation of F with Si is very high, consistent with the assumption that F in gypsum ponds exists mostly in a fluosilicate complex. All significant correlations with pH are negative, which is understandable since the more acid solutions (i.e., low pH's) would contain higher levels of phosphoric acid and dissolved ions.

Mean Compositions For Sample Pairings

			<				Weig	ht %						>
ID	Density	рН	P205	F	\$04S	Si	Al	Са	Fe	к	Mg	Na	NH4N	Cl
R1-1	1.034	1.63	2.02	1.07	0.274	0.271	0.0303	0.117	0.0220	0.042	0.034	0.216	0.169	0.012
R1-2	1.030	1.68	2.31	0.99	0.259	0.235	0.0272	0.125	0.0188	0.031	0.038	0.220	0.198	0.014
R3-1	1.009	1.88	0.48	0.41	0.139	0.108	0.0081	0.091	0.0082	0.011	0.012	0.125	0.061	0.010
R3-2	1.003	1.93	0.46	0.32	0.137	0.086	0.0069	0.088	0.0076	0.011	0.010	0.114	0.049	0.012
R4-1	1.034	1.57	2.18	1.03	0.159	0.278	0.0176	0.127	0.0412	0.037	0.051	0.199	0.060	0.013
R4-2	1.023	1.60	2.04	1.02	0.177	0.230	0.0256	0.135	0.0324	0.030	0.041	0.192	0.048	0.003
R5-1	1.017	1.78	0.98	0.65	0.131	0.173	0.0213	0.121	0.0173	0.019	0.013	0.157	0.056	0.007
R5-2	1.009	1.66	1.17	0.55	0.170	0.132	0.0202	0.116	0.0153	0.013	0.018	0.136	0.048	0.003
R6-1	1.018	1.68	1.12	0.72	0.138	0.199	0.0119	0.132	0.0116	0.035	0.027	0.208	0.004	0.007
R6-2	1.016	1.69	1.40	0.64	0.162	0.167	0.0120	0.129	0.0143	0.030	0.027	0.217	0.002	0.004
s1-1	1.034	1.64	2.17	1.06	0.290	0.266	0.0341	0.120	0.0258	0.044	0.033	0.217	0.227	0.010
s1-2	1.033	1.66	2.57	1.04	0.241	0.223	0.0430	0.133	0.0276	0.025	0.049	0.224	0.205	0.012
s3-1	1.009	1.88	0.53	0.58	0.150	0.137	0.0084	0.084	0.0101	0.018	0.007	0.199	0.061	0.010
s3-2	1.007	1.94	0.51	0.42	0.128	0.117	0.0056	0.095	0.0076	0.018	0.009	0.178	0.050	0.012
s4-1	1.041	1.58	2.74	1.10	0.176	0.280	0.0223	0.144	0.0562	0.040	0.052	0.212	0.059	0.012
s4-2	1.022	1.60	1.89	1.03	0.179	0.250	0.0308	0.155	0.0312	0.020	0.039	0.185	0.049	0.001
s5-1	1.021	1.75	1.16	0.88	0.157	0.201	0.0226	0.108	0.0207	0.030	0.015	0.215	0.132	0.007
s5-2	1.020	1.75	1.48	0.72	0.152	0.160	0.0195	0.141	0.0187	0.014	0.023	0.222	0.050	0.004
s6-1	1.016	1.87	1.25	0.47	0.140	0.118	0.0086	0.103	0.0089	0.038	0.022	0.218	0.004	0.007
s6-2	1.017	1.77	1.60	0.62	0.121	0.154	0.0136	0.144	0.0221	0.024	0.034	0.237	0.001	0.004

Comparisons For Differences (Group 1 - Group 2):

Density pH \$04S Si сι P205 F Αl Ca Fe κ Mg Na NH4N Mean 0.005 -0.002 -0.08 0.06 0.003 0.028 -0.0019 -0.011 0.0026 0.010 -0.002 0.004 0.013 0.003 diff. t 2.78 -0.10 -0.68 2.20 0.35 3.63 -1.19 -2.39 0.86 4.23 -0.77 0.84 values 1.52 1.69 Critical values for 9 degrees of freedom: t = 1.83 (P = 0.10) t = 2.26 (P = 0.05) t = 3.25 (P = 0.01)

	Density	рн	P205	F	S04S	Si	Al	Ca	Fe	К
Density	1 000				•••••					
Density	1.000									
рł	-0.757**	1.000								
P205	0.943**	-0.797**	1.000							
F	0.838**	-0.911**	0.805**	1.000						
SO4S	0.554*	-0.496*	0.506*	0.640**	1.000					
Si	0.851**	-0.920**	0.795**	0.980**	0.596**	1.000				
Al	0.655**	-0.712**	0.650**	0.836**	0.742**	0.759**	1.000			
Ca	0.656**	-0.828**	0.767**	0.686**	0.131	0.704**	0.453	1.000		
Fe	0.814**	-0.779**	0.824**	0.787**	0.204	0.800**	0.562*	0.736**	1.000	
κ	0.795**	-0.537*	0.711**	0.573**	0.375	0.634**	0.261	0.475*	0.528*	1.000
Mg	0.843**	-0.741**	0.892**	0.778**	0.464*	0.764**	0.630**	0.621**	0.799**	0.598**
Na	0.641**	-0.391	0.656**	0.452	0.275	0.429	0.222	0.511*	0.361	0.716**
NH4N	0.416	-0.068	0.315	0.310	0.772**	0.251	0.545*	-0.201	0.015	0.215
Cl	0.337	-0.125	0.389	-0.016	-0.165	0.049	0.203	0.422	0.225	0.429
	Ma	Ma	AUU - M	01						
	mg 	Na 	мп4м 							
Mg	1.000									
Na	0.545*	1.000								
NH4N	0.219	0.177	1.000							
сι	0.062	0.365	0.008	1.000						

Table 4. Correlation Coefficient Matrix for Pond Water Sample Composition Variables^a

^a Probability levels that coefficients differ from zero: * = 0.99 ** = 0.999

Because of the extensive intercorrelation among the pond water composition variables, the data were subjected to factor analysis using the Factor procedure of the SPSS/PC+ statistical software package. Factor analysis is a multivariate statistical analysis technique that has been developed for simplifying a data set by analyzing inter-correlations within a set of variables and determining whether a smaller number of "derived" variables (i.e. factors) can adequately describe the observations. Details of factor analysis methods and examples of applications are given by Darryl G. Howery in "Factor analyzing the multifactor data of chemistry" (American Laboratory, pp. 14-25, February 1976) and Paul H. Weiner in "Solve problems via factor analysis" (Chemtech, pp. 321-328, May 1977).

Although factor analysis can be used to construct quantitative models, it is particularly useful for interpreting the qualitative features of a complex data set. Since the purpose of this analysis was to obtain a qualitative description, the variables representing the sample collection site, the type of sample, and the collection date group were numerically coded and included with the composition variables for the factor analysis, which are given in Table 5. Assigned values for the qualitative variables correspond to the identification codes described in the footnote to Table 1. Site and Group are the collection site numbers 1 through 7 and the collection date groups 1 and 2, respectively. Values for the variable Type are 1,2, and 3 for the R (return water), D (discharge water), and S (slurry water) samples, respectively.

The first section of the Table 5 shows results from a principal components extraction procedure, in which abstract factors are related to the variance in the raw data matrix. Eigenvalues and variance distribution data for 10 factors are given. An eigenvalue is an approximate measure of the number of experimental variables that are explained by a derived factor. For example, factor number one with an eigenvalue of 8.4733 accounts for about the same variance in the initial data set as do 8.5 experimental variables, factor two is approximately equivalent to 2.5 variables, etc. With default conditions which limit significant factors to those with eigenvalues of 1.0 or greater, the principal components step indicated that four factors were sufficient to describe the input data matrix. These four factors cumulatively explain about 86% of the variance in the data. This variance is attributed to an "effect" of the factors, and the remaining variance is attributed to sampling and analytical scatter.

After the initial factor extraction step, data were further simplified by the Varimax rotation method, which attempts to minimize the number of variables that have high degrees of association with each factor. After rotation, the procedure generated a matrix of factor loadings that show the relationships between factors and variables. Bach factor loading is a measure of the correlation between a variable and a factor.

The matrix in Table 5 is sorted by the loading magnitudes to better illustrate relationships between the variables and factors. For example, one can see that the first factor is more strongly correlated with pH, Si, F, Fe, P₂O₅, Density, Mg Ca, and Al than with other variables. The second factor is correlated with NH₄, SO₄-S, and the sampling site; the third with Cl, K, and Na; and the fourth with the sample type and collection group. A qualitative interpretation of the rotated factor matrix is given below.

Factor 1 apparently relates to the primary inputs to the gypsum pond system by way of the wet-process phosphoric acid production plant. A negative loading by pH reflects a positive correlation with total acidity in the pond. Density is included in this factor since density correlates positively with the amounts of dissolved acids and salts in the solution. The other significant contributors (Si, F, Fe, P₂O₅, Mg, Ca, and Al) are common constituents in phosphate rock. They have a common mode of entry to the pond via residual acid, undissolved rock, precipitated impurities, and phosphogypsum in the filter cake slurry. The variables SO₄, K, and Na which also would enter the pond via the slurry have moderate, positive loadings on Factor 1. However, they are more important contributors to other factors.

Initial statistics

Factor	Eigenvalue	% of Var	Cum %
1	8.47330	49.8	49.8
2	2.50917	14.8	64.6
3	2.23220	13.1	77.7
4	1.31860	7.8	85.5
5	.89144	5.2	90.7
6	.59465	3.5	94.2
7	.42252	2.5	96.7
8	.20110	1.2	97.9
9	.11795	.7	98.6
10	.08213	.5	99.1

•

Factor Loadings by Variables

(after principal components extraction and varimax rotation)

Variable	FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4
		~~~~~~~		
рН	96335	.04104	.01603	.01093
Si	.95722	.15150	.01183	08398
F	.95435	.20624	05409	.02445
Fe	.86248	09284	.20157	.02683
P205	.85167	.21958	.38048	.16938
Density	.83779	.32190	.40084	00093
Mq	.83675	.16229	.15743	.18687
Ca	.81141	32468	.26781	.17320
Al	.76038	.44776	31993	.12503
NH4	.11269	.97158	.01061	01524
Site	.11196	83426	34889	.06229
SO4	.49115	.77260	18939	.05957
C1	.06250	04227	.84767	11481
ĸ	.58620	.17962	.63235	13232
Na	.43519	.12882	.61837	.42155
Tvpe	00120	.02738	.02271	.88723
Group	.11958	13958	51005	.62979

(See text for explanation of Site, Type, and Group variables.)

Factor 2 is related to operating conditions at the different sampling sites. The Site variable has high loading (the negative value is a result of an arbitrary choice of site numbers). The SO₄ contribution is assumed to arise from variations in free sulfuric acid content in the gypsum slurry and process acid introduced to ponds at different sites. The NH₄ variable is correlated with the "site" factor since the practice of using pond water to scrub ammonia from fertilizer production effluents is a site dependent variable. The F content is not as strongly associated with these variables as it is with the primary input factor.

Factor 3 has high loadings by Cl, K, and Na. It is interpreted as a factor that reflects the introduction of these contaminants into the pond water. Since K and Na also have moderate loadings on Factor 1, their contribution to Factor 3 may arise from a source that is independent of K and Na in phosphate rock feeds.

Factor 4 has high loadings by the Type and Group variables. Therefore, this factor is related to variance in the data due to the collection of different sample types and collection of two sample groups at different times of the year. It is interesting to note that contributions of these two variables were sufficient to generate only one factor and not two.

#### CONCLUSIONS FROM SAMPLE COLLECTIONS AND ANALYSES

Compositions of gypsum pond water samples collected for this project appear to have relatively few independent constituents. Simple inspection of data showed that operating characteristics of the acid plant from which samples were collected had strong influence on compositions. Concentrations of most individual pond water constituents are strongly correlated which suggests a common influence. Factor analyses isolated a factor which contained many of the chemical constituents and appeared to be related to the input of materials to the pond. Such a factor would be dependent on the specific composition of the pond input streams, which again points to plant operating characteristics as the strong influence on pond composition. Differences in compositions of return, discharge, and slurry water compositions were very small to none, as were differences in compositions of samples collected at different seasons. Hence, chemical reactions which might change compositions with residence time in the pond or aging during the year may not be as influential as are those characteristics which determine initial inputs to the pond systems.

#### **SECTION 3**

#### **IDENTIFICATIONS OF SOLIDS CONTAINED IN POND WATER SEDIMENTS**

#### SOLIDS IN COLLECTED SAMPLES

When the May 1988 group of collected pond water samples were delivered to the TVA laboratories, approximately two-liter aliquots were taken from each of the 18 samples and filtered to remove suspended solids. These solids were rinsed with a methanol-water solution then with methanol, dried, and submitted for materials characterizations; there were not sufficient amounts of the solids to obtain chemical analyses. Results of materials characterizations by polarized light microscopy (PLM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) that were conducted on the solids in June 1988 are given in Table 6.

A majority of the solids filtered from pond water samples in June 1988 contained gypsum, Na₂SiF₆, and chukhrovite. Several samples contained amorphous unknowns, one with a refractive index in the range 1.53 to 1.55, and another with a refractive index of 1.430. XRD patterns for several samples had unidentified peaks at d spacings about 7.12 to 7.20. Based on information from more extensive examinations of a later group of samples (discussed below), the unknown material with a refractive index near 1.55 and XRD peak near 7.18 is probably a compound with the general formula Fe₃XH₈(PO₄)₆·6H₂O, where X could be H, K, and/or NH₄. Information from other sample examinations suggests that the unknown with a refractive index about 1.43 is probably silica gel.

#### SEDIMENTS REMOVED NOVEMBER 1988

After the 2-liter aliquots were removed, the remaining samples were stored at room temperature (22°C - 26°C) in the plastic bottles used for their collection and transport. Examinations made several months later showed that some of the stored samples contained larger amounts of sediment than when they were first stored. Sediments were collected from samples D6-1, R4-1, S2-1, and S4-1 in November 1988. Solid phases were filtered from the mother liquor, washed with methanol, and dried overnight at 60°C. The dry solids were submitted for materials characterizations; there were not sufficient amounts collected at that time for chemical analyses. Table 7 contains results of these characterizations.

The initial characterizations of the four sediments collected in November 1988 showed that gypsum, Na₂SiF₆, chukhrovite were present. PLM examinations showed that the sediments also contained an amorphous unknown material with a refractive index about 1.42 and another unknown material comprised of hexagonal crystals with refractive index in the range from 1.56 to 1.57. After accounting for contributions due to gypsum, Na₂SiF₆, and chukhrovite, there were several unidentified peaks in the XRD pattern at d spacings 7.18, 4.58, 3.58, 3.10, and 2.89. Samples were subsequently examined with scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDX) to identify the unknowns.

Sample ID	PLM	est %	XRD	FTIR ^a
D1-1	CaSO4·2H2O Na2SiF6 Amorphous (RI=1.550)	30 60-70 5-10	CaSO4·2H2O Na2SiF6 UI ^b 7.19, 5.78	CaSO4・2H2O Na2SiF6
D2-1	CaSO4·2H2O Chukhrovite Amorphous (RI=1.310)	10-20 10 80	CaSO4·2H2O Na2SiF6 NaKSiF6 Chukhrovite	CaSO4·2H ₂ O Na ₂ SiF ₆
D3-1	CaSO4·2H2O Chukhrovite	90-95 5	CaSO4·2H ₂ O Na ₂ SiF ₆ (t)	CaSO4・2H ₂ O Na ₂ SiF ₆
D4-1	CaSO4·2H2O Chukhrovite Amorphous (RI=1.430)	10 20 70	CaSO4·2H2O Na2SiF6 Chukhrovite UI ^b 7.20	CaSO4・2H ₂ O Na ₂ SiF ₆
D5-1	CaSO4·2H2O Chukhrovite	90-95 5	CaSO4·2H2O Na2SiF6 (t) Chukhrovite	CaSO4•2H2O Na2SiF6
D6-1	CaSO ₄ ·2H ₂ O Chukhrovite Amorphous (RI=1.430)	80 <5 10	CaSO4·2H2O Na2SiF6	CaSO4・2H2O Na2SiF6
R1-1	CaSO $4 \cdot 2H_2O$ Na ₂ SiF ₆ Amorphous (RI = 1.532 - 1.550)	40-50 40-50 <5	CaSO4·2H ₂ O Na ₂ SiF ₆ NaKSiF ₆ UI ^b 7.18	CaSO4·2H ₂ O Na ₂ SiF ₆
R2-1	CaSO4 NaKSiF6 Amorphous (RI=1.550)	10-20 80 <5	CaSO $4 \cdot 2H_2O$ Na $2SiF_6$ NaKSiF $_6$ UI ^b 7.12 & 4.58	CaSO4 • 2H ₂ O Na ₂ SiF ₆
R3-1	CaSO4•2H2O (t)	100	Insufficient sample	CaSO4•2H ₂ O Na ₂ SiF ₆
R4-1	CaSO4·2H2O Chukhrovite Amorphous (RI=1.430)	50 20-30 20-30	CaSO $4 \cdot 2H_2O$ Na $2SiF_6$ (t) Chukhrovite UI ^b 7.14, 5.75 & 3.06	CaSO4•2H2O Na2SiF6

Table 6. Characterizations of Solids Filtered from Gypsum Pond Samples June 1988 Table 6 (continued)

Sample Number	PLM	est %	XRD	FTIR 
R5-1	CaSO4·2H2O (t) Chukhrovite (t)	90-95 <5	Insufficient s	ample
R6-1	CaSO4·2H2O Chukhrovite Amorphous (RI=1.430)	60-70 10-20 20	CaSO4・2H2O Na2SiF6 Chukhrovite	CaSO4•2H ₂ O Na ₂ SiF ₆
S1-1	CaSO4•2H2O Na2SiF6	20 80	CaSO4•2H ₂ O Na ₂ SiF ₆	CaSO4·2H2O Na2SiF6
s2-1	CaSO4·2H2O Amorphous (RI=1.430)	60 40	CaSO4・2H ₂ O Na ₂ SiF ₆ NaKSiF6 (t) Chukhrovite (t)	CaSO4·2H ₂ O Na ₂ SiF6
s3-1	CaSO4·2H2O Chukhrovite	80-90 10-20	CaSO4・2H2O Na2SiF6 (t) Chukhrovite (t)	CaSO4•2H ₂ O Na ₂ SiF ₆
S4-1	CaSO4·2H ₂ O Na ₂ SiF ₆ Chukhrovite Amorphous (RI=1.430)	50-60 10-20 5-10 20-30	CaSO4·2H2O Na2SiF6 Chukhrovite UI ^b 7.12	CaSO4·2H2O Na2SiF6
s5-1	CaSO4・2H2O Na2SiF6 Chukhrovite	20 50 30	CaSO4・2H2O Na2SiF6 Chukhrovite	CaSO4・2H2O (t) Na2SiF6 Chukhrovite

S6-1

Insufficient sample

Chukhrovite =  $Ca_4AlSi(SO_4)F_{13} \cdot 12H_2O$ 

(t) = tentative identifications

^a Cannot differentiate between Na₂SiF₆ and NaKSiF₆ from FTIR spectra, therefore SiF₆⁻² compounds are reported as Na₂SiF₆.

^b Unidentified peaks (d spacings) in XRD pattern; see text for possible identification.

ID				_
Number	PLM	est %	XRD	FTIR ^a
		0.0	0-00 - 011-0	0-00 - 20-0
D6-1	Caso ₄ ·2H ₂ O	80	CaSO4 · 2H2O	
	Chukhrovite	20	Chukhrovite	Chukhrovite
R4-1	Chukhrovite	60-70	Chukhrovite	Chukhrovite
	Amorphous	20-30	$Fe_3KH_8(PO_4)_6 \cdot 6H_2O$	
	Hexagonal unknown	10		
\$2_1	CaS04+2Ho0	30-40	CaSO4+2HoO	CaSO4 • 2HoO
52-1		20 40	NacsiFc	NaoSiFc
		30-40	Na25116	Chulhhanita
	Chukhrovite	30-40	Chukhrovite	Chukhrovite
S4-1	Na ₂ SiF ₆	60	Na2SiF6	Na ₂ SiF6
	Chukhrovite	10-20	Chukhrovite	Chukhrovite
	Amorphous	<5	$Fe_3KH_8(PO_4)_6 \cdot 6H_2O$	
	Hexagonal unknown	10-20		

Table 7. Characterizations of Solids Collected from Gypsum Pond Samples Nov. 1988

^aCannot differentiate between Na₂SiF₆ and NaKSiF₆ from FTIR spectra, therefore SiF₆⁻² compounds are reported as Na₂SiF₆.

SEM examinations confirmed the presence of gypsum and Na₂SiF₆. EDX spectra of cubic and bipyramidal octahedral crystals showed they contained Ca, S, Si, Al, and F. This is consistent with the elemental composition expected for chukhrovite, and thereby confirmed the identity of the octahedral crystal phase as chukhrovite. EDX spectra of the hexagonal crystals, most of which were coated with fine particles of other materials, showed strong peaks due to Si, P, and Fe and smaller peaks due to S, K, and Ca. Reevaluation of the XRD data, as discussed below, assigned the group of previously unidentified peaks to the compound Fe₃(X)H₈(PO₄)₆·6H₂O, and the hexagonal crystals were identified as an iron phosphate compound. The amorphous unknown with refractive index about 1.42 was identified as silica gel, which can have a refractive index in the range 1.40 to 1.47. In addition, very fine particles of gypsum were detected on the surfaces of other crystals.

#### SEDIMENTS REMOVED FEBRUARY AND JUNE 1989

In February 1989 sediments were taken from samples D2-1, D4-1, Rl-1, R4-1 and S4-1. Sediments also were collected from Dl-1, D3-1, D5-1, R2-l, R4-1, S1-1, and S2-1 in June 1989. The solids were separated from mother liquor by centrifugation, washed twice with 1:1 methanol:water and once with 100% methanol, and dried at 60°C. Sufficient amounts were collected to obtain chemical analyses and materials characterizations. Results of characterizations by XRD are in Table 8 for sediments collected in February 1989 and in Table 9 for sediments collected in June 1989; chemical compositions are given in Table 10.

The XRD characterizations of the sediments detected gypsum, Na₂SiF₆, chukhrovite, and an iron phosphate compound, identified as Fe₃KH₈(PO₄)₆·6H₂O. Although the latter three compounds were found in a majority of samples, sediment compositions were variable. Comparisons of the qualitative determinations with mole ratios, calculated from the analytical data, helped with the interpretation of the data.

Sediments from Dl-1, D3-1, Rl-1, and Sl-1 had definite XRD patterns for gypsum, and mole ratios Ca:S for these four samples were close to the expected value of one. Mole ratios Ca:S for the other eight sediment samples, all of which contained chukhrovite according to XRD, ranged from 3.8 to 4.8. Ratios Ca:Al for these eight samples ranged from 3.0 to 4.0. Although reported stoichiometries of compounds regarded as "chukhrovite" vary, a formula that has been used for the material seen in phosphoric acid systems is Ca₄SO₄SiAlF₁₃·10H₂O. This stoichiometry predicts the ratios Ca:S and Ca:Al both equal to 4.0. Other ratios (e.g., F:Si and Al:Si) varied from values predicted by this formula, probably because of contributions from relatively larger amounts of Na₂SiF₆ and an occasional occurrence of XRD-undetectable, amorphous F-, Al-, and Si-containing materials. Thus, there is relatively good agreement between findings from XRD examinations and chemical compositions for the Ca, S, and Al constituents.

All sediment samples except those from D3-1 and D5-1 contained a compound which was identified by XRD as  $Fe_3KH_8(PO_4)_6\cdot 6H_2O$ . Mole ratios P:Fe calculated from chemical analyses of samples that contained the iron phosphate compound ranged from 2.0 to 2.3, which are consistent with the stoichiometry of this compound. The observed mole ratios Fe:K varied considerably from the expected value of 3.0, and most samples contained higher concentrations of ammonium-N than they did K. So, there is uncertainty about the exact nature of this iron phosphate material.

## Table 8. XRD Characterizations of SolidsCollected from Samples Feb. 1989

ID Number	Constituents
D2-1	Chukhrovite Fe3KH8(PO4)6•6H2O Na2SiF6
D4-1	Chukhrovite Fe3KH8(PO4)6·6H2O
R1-1	CaSO4·2H2O CaSO4·0.5H2O Fe3KH8(PO4)6·6H2O Na2SiF6 Chukhrovite (tentative)
R4-1	Chukhrovite Fe3KH8(PO4)6•6H2O
S4-1	Chukhrovite

Chukhrovite Fe3KH8(PO4)6•6H2O Na2SiF6 NaKSiF6

Table	9.	XRD	Charac	cteriz	zations	of So	lids
		Coll	ected	from	Samples	June	1989

ID Number	Constituents
D1-1	CaSO4·2H2O Na2SiF6 Chukhrovite Fe3KH8(PO4)6·6H2O
D3-1	CaSO4·2H2O Chukhrovite
D5-1	Chukhrovite
R2-1	Na ₂ SiF ₆ Chukhrovite Fe ₃ KH8(PO4)6•6H ₂ O
R4-1	Chukhrovite Fe3KH8(PO4)6・6H2O Unidentified material
S1-1	CaSO4 • 2H ₂ O Na2SiF6 Fe3KH8(PO4)6 • 6H2O
s2-1	Na2SiF6 Chukhrovite Fe3KH8(PO4)6•6H2O

Table 10. Gypsum Pond Water Sample Sediment Compositions

		<				We	ight pe	rcent				>
ID												
Number	Date	Ρ	F	so ₄ - s	Si	Al	Ca	Fe	К	Mg	Na	NH4-N
D1-1	6/89	5.35	13.6	6.22	6.95	0.45	9.72	4.83	0.441	0.004	6.16	0.3115
D2-1	2/89	1.98	36.7	2.10	7.99	1.68	9.86	1.76	0.13	0.0036	6.44	0.292
D3-1	6/89	0.15	1.3	17.20	0.82	0.22	23.10	0.089	0.061	0.005	0.11	0.0256
D4-1	2/89	1.34	24.5	3.12	6.78	2.74	15.10	1.18	0.07	0.0078	0.33	0.210
D5-1	6/89	0.05	27.9	3.67	5.53	4.19	18.80	0.021	0.029	0.011	0.94	0.0112
R1-1	2/89	4.19	22.1	7.23	5.73	0.21	9.71	3.74	0.09	0.0048	7.63	0.486
R2-1	6/89	2.05	24.9	1.64	8.55	1.49	8.65	1.69	0.608	0.070	8.45	0.0965
R4-1	2/89	2.93	25.2	2.94	6.19	2.65	14.40	2.60	0.14	0.0061	0.34	0.307
R4-1	6/89	6.43	10.7	1.51	10.40	1.56	9.05	5.86	0.282	0.028	0.51	0.3207
s1-1	6/89	1.69	22.3	7.05	7.71	0.03	9.09	1.34	0.388	0.006	12.50	0.0866
s2-1	6/89	1.83	29.7	1.81	8.98	1.63	9.19	1.50	0.493	0.013	10.60	0.0624
S4 - 1	2/89	2.91	32.7	2.36	7.14	2.17	11.10	2.52	0.57	0.0059	4.65	0.237

Mole Ratios

ID								
Number	Date	Ca:S	Ca:Al	F:Si	F:Na	P:Fe	Fe:K	Fe:N
D1-1	6/89	1.3	14.5	2.9	2.7	2.0	7.7	3.9
D2-1	2/89	3.8	4.0	6.8	6.9	2.0	9.5	1.5
D3-1	6/89	1.1	71.7	2.4	14.5	3.0	1.0	0.88
D4-1	2/89	3.9	3.7	5.3	89.8	2.0	11.9	1.4
D5-1	6/89	4.1	3.0	7.5	35.9	4.3	0.5	0.47
R1-1	2/89	1.1	31.1	5.7	3.5	2.0	29.3	1.9
R2-1	6/89	4.2	3.9	4.3	3.6	2.2	2.0	4.4
R4-1	2/89	3.9	3.7	6.0	89.7	2.0	13.1	2.1
R4-1	6/89	4.8	3.9	1.5	25.4	2.0	14.6	4.6
S1-1	6/89	1.0	211.0	4.3	2.2	2.3	2.4	3.9
s2-1	6/89	4.1	3.8	4.9	3.4	2.2	2.1	6.1
s4-1	2/89	3.8	3.4	6.8	8.5	2.1	3.1	2.7

Past research on iron phosphate compounds in wet-process phosphoric acid systems detected similar compounds with an ammonium ion or proton substituted for the potassium ion. Reference patterns from the XRD data files used at TVA for identifications of compounds Fe₃XH₈(PO₄)₆·6H₂O, where X is H, K, or NH₄, are given in Table 11. Inspection of these patterns show strong qualitative similarities. All three compounds have major peaks at d spacings about 7.10 - 7.20, 5.70 - 5.80, 4.50 - 4.60, 3.00 - 3.10, and 2.80 - 2.90. Thus, a pattern generated by a mixture of the H-, K-, and NH₄-containing compounds will be difficult to resolve. The chemical and X-ray data on the sample sediments suggest that these solids contained such a mixture rather than only the Fe-K-PO₄ compound. Since mole ratios Fe:N were less than 3 for several sediments, it's possible that part of the ammonium nitrogen is present in a phase other than the Fe-containing material.

#### CORRELATION AND FACTOR ANALYSES OF SEDIMENT DATA

The sediment chemical composition data were evaluated with correlation and factor analyses methods to determine whether these methods provided additional information about the identities of sediment compounds. In addition to chemical variables, the variable Age (number of months between the collection of a pond water sample and the removal of the sediment from it) was included in the data set to look for effects of storage time.

Correlation coefficients for sediment concentration variable pairs are listed in Table 12. The significant correlations with the sediment phosphorus concentrations were positive correlationsbetween P and Fe and between P and NH₄-N; the correlation between P and Fe was nearly equal to one. The Fe concentration in the sediments had a positive, significant correlation with the NH₄-N concentration. Other significant correlations were those between SO₄-S and F, between SO₄-S and Si and between Si and Ca; all three of these relationships had negative correlation coefficients.

Application of factor analysis methods showed that the sediment composition data could be explained by four factors. Results from principal components extraction and varimax rotation are given in Table 13.

Examination of the factor matrix after the varimax rotation shows that one factor is heavily loaded by the Fe, P, and NH₄-N variables (all positive loadings). There appears to be very little contribution by the K variable. This factor is assigned to the Fe₃(H,K,NH₄)H₈(PO₄)₆·6H₂O compound, and it is obvious that NH₄-N is a more important constituent than is K. The factor loadings show evidence of some influence by the Ca (negative) and Si (positive) variables.

Strong positive loadings by F, Al, and Si in the second factor suggest that it could relate to the chukhrovite content of the sediments. Negative loadings by  $SO_4$ -S and Ca are confusing since one would expect positive loadings because of the Ca and  $SO_4$  in chukhrovite. However, the negative contributions could mean that the dilution effect by gypsum overshadows the expected positive correlations with Ca and  $SO_4$ .

A third factor has a high positive loading by Na and a moderate loading by K, which suggest that it is related to Na₂SiF₆ and NaKSiF₆. However, the Si and F variable loadings are small. Because of the positive Na and K loadings and the moderate negative loadings by Ca and Al, this factor seems to be related more to the overall cation content in the sediments than to a specific compound.

#### Table 11. XRD Reference Patterns for Fe3(K,NH4,H)H8(PO4)6.6H2O Compounds

#### Fe3KH8(PO4)6.6H2O Fe3NH4H8(PO4)6.6H2O Fe3H9(PO4)6.6H2O

d	I/I _o	d	I/I ₀	d	I/I _O
8.33	17	8.33	16	7.940	32
7.85	45	7.85	40	7.180	80
7.10	75	7.10	100	5.780	30
5.73	50	5.73	51	4.580	100
4.54	75	4.54	44	4.210	2
4.19	7	4.19	7	4.024	12
3.99	12	3.99	13	3.972	25
3.94	8	3.70	9	3.867	3
3.70	12	3.56	24	3.723	4
3.56	30	3.21	44	3.591	26
3.21	45	3.08	90	3.242	42
3.08	100	2.98	7	3.100	53
2.98	12	2.93	18	3.001	16
2.93	30	2.87	31	2.954	34
2.87	40	2.80	27	2.888	19
2.80	40	2.63	9	2.827	55
2.63	15	2.60	13	2.646	14
2.60	20	2.43	11	2.613	31
2.43	14	2.28	5	2.440	16
2.28	11	2.04	9	2.289	21
2.23	7			2.238	2
2.20	9			2.209	9
2.17	8			2.181	15
2.12	7			2.129	8
2.10	6			2.080	3
2.07	5			2.047	14
2.04	8			2.010	2

Table 12.	Gypsum Pond	Water	Sample	SedimentsCorrelation	Coefficients	for
	Composition	Variak	ole Pair	rs		

	P	F	so ₄ -s	Si	Al	Ca
Р	1.0000					
F	2193	1.0000				
s04-s	2956	7145*	1.0000			
Si	.5179	.4452	8599**	1.0000		
Al	3109	.4945	5534	.1303	1.0000	
Ca	6201	3930	.6267	8516**	.2909	1.0000
Fe	.9993**	2299	2884	.5039	2965	5978
K	.2807	.1818	3614	.5377	2382	6395
Mg	.0684	0160	3348	.3945	.0536	2976
Na	.0299	.3458	1420	.3938	5107	6877
NH4-N	.7586*	.0571	2169	.2330	2180	4505
Age	0897	4453	.1965	.0827	1748	.0520

	Fe	K	Mg	Na	NH4-N	Age
Fe	1.0000					
K	.2518	1.0000				
Mg	.0557	.4868	1.0000			
Na	0007	.5961	.1507	1.0000		
NH4-N	.7642*	1322	2224	0616	1.0000	
Age	0948	.3439	.3732	.1963	6663	1.0000

Probabilities for Significance of Coefficients: * P = .99 ** P = .999

.

#### Table 13. Gypsum Pond Water Sample Sediments--Factor Analysis of Chemical Composition Variables

	FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4
	مسور سنت فسية المت فينتر منه بالبية علته			
Ca	96382	06727	09899	.21411
Si	.88993	.28318	09289	.17208
P	.73961	60807	.08328	.24783
Fe	.72194	62363	.06786	.26432
s04-	71871	41182	.50857	21758
K	.63152	.39268	.45669	03030
NH4-N	.52404	73536	35981	13022
Age	08377	.35159	.75976	.37899
Al	14857	.44858	73387	.44777
F	.35333	.55873	62894	38574
Na	.49111	.34717	.42893	64765
Mg	.34074	.44810	.31845	.47759

### Factor Matrix After Principal Components Extraction (4 factors)

#### Factor Matrix After Varimax Rotation

Fe	.98892	.00321	.06358	.05067
Р	.98622	.00807	.09463	.05900
NH4-N	.81280	.08493	.02301	54167
so ₄ -s	27252	94402	08611	13884
F	24672	.85284	.30404	31740
Al	28682	.71503	60662	.02884
Si	.46871	.67462	.35830	.32746
Na	07063	.06598	.97506	.07119
Ca	55893	41952	69942	10734
K	.16775	.21444	.63782	.53063
Age	17875	31474	.11240	.84134
Mg	.07060	.25414	.08687	.75451

The fourth factor has higher loadings by Age and Mg (both positive), a moderate positive loading by K, and a moderate negative loading by NH₄-N. Since sediment Mg concentrations were all very low, and Age did not have a particularly strong correlation with any of the chemical variables, this factor seems to be a miscellaneous factor which accounts for variance in the data that was not included in other factors.

#### CONCLUSIONS FROM SEDIMENT CHARACTERIZATIONS AND ANALYSES

The important compounds in solid materials suspended in gypsum pond water samples collected from several Florida phosphate producers and solids that settled from stored samples are gypsum, Na₂SiF₆, chukhrovite, NaKSiF₆, and Fe₃(H,K,NH₄)H₈(PO₄)·6H₂O. The ammonium form of the latter compound appears to be the more prevalent form. In addition, sediments contained varied amounts of amorphous materials, much of which appeared to be silica gel. The sediment analytical data were in good agreement with the qualitative findings.
#### **SECTION 4**

#### **EVAPORATIONS OF POND WATER SAMPLES**

Aliquots of the gypsum pond water samples collected from Florida phosphate producers in May 1988 were evaporated to increase solution concentrations and force the precipitation of low solubility compounds. The precipitated materials were analyzed and characterized to obtain additional information about conditions that influence on the distributions of F, P, S, and other elements in gypsum pond systems.

#### **INITIAL EVAPORATIONS (Runs A - R2)**

Initially, aliquots from all 18 samples were evaporated at a relatively fast rate. Six runs were replicated to check results and train a technician who was new to the project.

Weighed 500 mL aliquots were placed in tared 1 liter wide-mouth high density polyethylene bottles. The bottles were placed in a constant temperature (60°C) shaker bath and the solutions were allowed to evaporate until their volumes were reduced to about 25% of the initial volumes. The times needed to evaporate samples to the target volumes ranged from about 37 hours to about 50 hours.

When evaporations were completed, the bottles were capped and the samples were cooled and weighed. The evaporated samples were filtered tocollect the concentrated solutions and precipitated solids. The solids were washed with methanol and dried at about 75°C. Solution and solid phases were submitted for analyses and solids were submitted for materials characterizations.

Compositions of the solution phases filtered from evaporated samples are listed in Table 14. Inspection of the solution phase concentration data show that sample evaporations caused increases in acidity; pH's decreased by about 0.3 to 0.4 unit. In most cases the element concentrations in the solutions increased; Ca, Na, and ammonium-N concentrations showed decreases for several runs.

If sample evaporation produced no losses of materials from the solution phases by either precipitation or volatilization, the solution phase concentration of a given element would equal its starting concentration corrected for the loss of water. The ratio of an element's concentration in the recovered solution to that in the starting solution would equal the ratio of sample weight changes produced by the evaporation. Concentration ratios (recovered/initial), evaporation ratios [100/(100 - % evaporated)], and values for the quotients (concentration ratio/evaporation ratio) are listed in Table 15. Mean values of the quotients for Al and Fe both equal one, and the mean quotient for P is near to one. Therefore, essentially all of these three elements remained in the solution phase during evaporations. Most other elements had mean quotients distinctly less than one, indicating significant losses from solution. The high values for Mg and low values for N are believed to be due to analytical error.

Results from characterizations of precipitated solids made by PLM, XRD, and FTIR are in Table 16. Compositions of the solids are in Table 17 (weight % basis) and Table 18 (molar basis). Table 18 also gives values of selected mole fractions that were calculated to assist in the identification of compounds contained in the solids.

Table 14. Gypsum Pond Water Evaporations A-R2--Recovered Compositions

Run	ID	%				S04								NH4
No.	No.	evapd	рН	% P	% F	% S	% Si	% AL	% Ca	% Fe	%Κ	% Mg	% Na	% N
														• • • • •
A	R1-1	71.8	1.29	3.08	2.26	0.81	0.53	0.112	0.10	0.097	0.04	0.12	0.19	0.044
A2	R1-1	75.4	1.31	3.38	2.51	0.92	0.62	0.133	0.11	0.115	0.04	0.12	0.19	0.663
в	R2-1	81.5	1.01	6.42	1.50	0.27	0.34	0.107	0.29	0.214	0.04	0.18	0.16	0.011
с	D1-1	73.2	1.20	3.13	2.42	0.87	0.56	0.113	0.09	0.098	0.04	0.11	0.19	0.045
D	R3-1	75.5	1.47	0.70	1.07	0.35	0.25	0.031	0.07	0.034	0.05	0.02	0.27	0.017
E	R4-1	67.2	1.22	2.82	2.42	0.26	0.57	0.123	0.27	0.167	0.06	0.14	0.19	0.010
E2	R4-1	71.8	1.26	3.19	2.76	0.35	0.65	0.148	0.24	0.206	0.05	0.16	0.17	0.157
F	s5-1	73.4	1.28	1.66	1.78	0.34	0.42	0.104	0.14	0.092	0.05	0.05	0.21	0.013
G	s3-1	84.4	1.55	1.44	1.20	0.73	0.29	0.074	0.06	0.071	0.06	0.04	0.26	0.018
G2	s3-1	71.1	1.59	0.58	0.94	0.37	0.26	0.041	0.07	0.039	0.06	0.02	0.27	0.206
н	R6-1	82.8	1.32	2.85	1.58	0.48	0.37	0.079	0.12	0.077	0.04	0.13	0.18	0.003
I	s1-1	78.0	1.30	4.29	2.77	1.11	0.64	0.153	0.09	0.136	0.04	0.14	0.18	0.059
L	D4-1	70.6	1.32	3.14	2.91	0.31	0.65	0.126	0.03	0.171	0.04	0.13	0.17	0.014
κ	D2-1	76.9	1.21	4.34	1.27	trace	0.29	0.075	0.20	0.152	0.05	0.14	0.17	0.011
K2	D2-1	69.5	1.33	3.11	1.13	trace	0.29	0.058	0.21	0.122	0.05	0.07	0.21	0.142
٤	s4-1	72.1	1.22	4.46	2.91	0.28	0.61	0.212	0.27	0.290	0.04	0.19	0.13	0.010
М	D5-1	73.4	1.44	1.12	1.67	0.33	0.43	0.078	0.15	0.063	0.05	0.04	0.22	0.012
N	s6-1	75.4	1.51	2.00	0.51	0.38	0.12	0.035	0.09	0.035	0.06	0.09	0.38	0.000
0	R5-1	76.1	1.45	1.66	1.73	0.40	0.40	0.087	0.13	0.069	0.05	0.05	0.23	0.013
Ρ	D3-1	73.2	1.63	0.44	1.03	0.36	0.28	0.029	0.08	0.032	0.05	0.02	0.27	0.014
Q	D6-1	71.7	1.46	1.20	1.29	0.29	0.31	0.043	0.14	0.042	0.05	0.06	0.27	0.001
Q2	D6-1	77.6	1.39	1.83	1.40	0.33	0.35	0.056	0.11	0.054	0.05	0.07	0.20	<0.003
R	s2-1	75.8	1.30	3.94	1.18	0.24	0.28	0.080	0.26	0.161	0.04	0.10	0.20	0.008
R2	s2-1	68.6	1.37	2.78	1.06	trace	0.25	0.062	0.34	0.123	0.05	0.06	0.21	0.116

Table 15. Evaporations A-R2--Comparisons of Concentration^a and Evaporation^b Ratios

<pre>&lt; Concentration ratios/Evaporation ratio</pre>							tios	os>					
Run No.	ID No.	Evapn ^b ratio	P	F	SO4 S	Si	Al	Ca	Fe	ĸ	Mg	Na	NH4 N
 A	 R1-1	3.55	0.98	0.58	0.85	0.56	1.03	0.24	1.06	0.28	1.13	0.26	0.07
A2	R1-1	4.07	0.94	0.57	0.84	0.56	1.06	0.23	1.09	0.25	0.98	0.22	0.98
в	R2-1	5.41	1.06	0.34	0.36	0.28	1.12	0.28	1.12	0.19	1.11	0.12	0.04
с	D1-1	3.73	0.98	0.59	0.87	0.55	0.96	0.19	0.98	0.27	0.98	0.23	0.06
D	R3-1	4.08	0.82	0.67	0.80	0.58	0.91	0.19	0.98	1.22	1.63	0.55	0.07
Е	R4-1	3.05	1.08	0.76	0.77	0.62	1.00	0.47	1.00	0.49	0.92	0.31	0.04
E2	R4-1	3.55	1.05	0.75	0.89	0.61	1.03	0.36	1.06	0.35	0.90	0.24	0.56
F	s5-1	3.76	0.89	0.53	0.69	0.51	1.06	0.29	1.07	0.44	1.33	0.27	0.00
G	S3-1	6.41	0.99	0.34	1.02	0.32	1.10	0.10	1.14	0.47	2.08	0.20	0.00
G2	<b>s</b> 3-1	3.46	0.73	0.49	0.96	0.52	1.13	0.22	1.16	0.87	1.93	0.39	0.10
н	R6-1	5.81	1.04	0.37	0.72	0.32	1.09	0.15	1.15	0.17	1.12	0.15	_
I	S1-1	4.55	1.02	0.56	0.91	0.52	0.96	0.16	0.98	0.18	1.03	0.17	0.05
J	D4-1	3.40	0.99	0.73	0.69	0.63	0.95	0.05	0.96	0.29	0.96	0.26	0.08
к	D2-1	4.33	0.99	0.36	-	0.31	0.96	0.26	1.01	0.29	1.62	0.16	0.02
К2	<b>D2-</b> 1	3.28	0.93	0.43	_	0.41	0.99	0.36	1.07	0.38	1.07	0.27	0.32
$\mathbf{L}$	\$4-1	3.58	1.01	0.67	0.52	0.56	1.14	0.38	1.12	0.28	1.06	0.17	0.03
М	D5-1	3.76	0.71	0.64	0.85	0.63	0.88	0.36	0.85	0.66	1.52	0.42	0.06
N	<b>S6-</b> 1	4.07	1.05	0.30	1.28	0.24	0.89	0.22	0.91	0.37	1.11	0.42	-
0	R5-1	4.18	0.94	0.64	0.96	0.57	0.90	0.26	0.88	0.60	1.33	0.37	0.06
Ρ	D3-1	3.73	0.57	0.69	0.89	0.72	1.02	0.24	1.09	0.67	1.34	2.41	0.07
Q	D6-1	3.53	0.75	0.49	0.74	0.46	0.91	0.28	0.95	0.35	0.85	0.35	
Q2	D6-1	4.46	0.90	0.42	0.66	0.40	0.93	0.18	0.97	0.28	0.78	0.20	-
R	<b>s2-</b> 1	4.13	0.96	0.37	0.58	0.34	0.97	0.33	1.04	0.24	1.21	0.20	0.05
R2	s2-1	3.18	0.88	0.43	-	0.40	0.97	0.56	1.03	0.39	0.94	0.27	0.89
	Means		0.93	0.53	0.70	0.48	1.00	0.26	1.03	0.42	1.21	0.36	0.15
	Std. D	evn.	0.13	0.14	0.33	0.13	0.08	0.11	0.09	0.24	0.34	0.45	0.27
	c.V.'s		14	27	46	27	8	43	8	59	28	125	183

		Recovered	solution	concentration
^a Concentration	ratio =			
		Starting	solution	concentration

bEvaporation (Evapn) ratio = 100/(100 - % evaporated)

Table 16. Characterizations of Precipitated Solids from Evaporations A-R2

		< PL	M>	< XRD>	< FTIF	<>
Run	ID					
No.	No.	Identity	Estd %	Identity	Identity ^a	Estd %
Α	R1-1	Gypsum	50	Gypsum	Gypsum	50-70
		Na ₂ SiF6	30	Na ₂ SiF ₆	Na2SiF6	30-50
		NaKSiF ₆	10-20	NaKSiF6		
в	R2-1	Gypsum	50	Gypsum	Gypsum	50-70
		Na ₂ SiF ₆	30-40	Na ₂ SiF ₆	Na ₂ SiF ₆	30-50
		NaKSiF6	10-20	NaKSiF6		
с	D1-1	Gypsum	50	Gypsum	Gypsum	50-70
		Na ₂ SiF ₆	30-40	Na ₂ SiF ₆	Na ₂ SiF ₆	30-50
		NaKSiF6	10-20	NaKSiF6	2 0	
D	<b>R</b> 3–1	Gvpsum	50-60	Gvpsum	Gvpsum	50-70
-		NapSiFe	40-50	NacSiFe	NapSiFe	30-50
E	R4-1	Gypsum	50	Gypsum	Gypsum	50-70
		Na ₂ SiF6	30-40	Na2SiF6	Na2SiF6	30-50
		NaKSiF6	10-20	NaKSiF6		
F	S5-1	Gypsum	50	Gypsum	Gypsum	50-70
		$Na_2SiF_6$	30-40	Na ₂ SiF ₆	Na ₂ SiF ₆	30-50
		NaKSiF ₆	10-20	NaKSiF6		
G	<b>s</b> 3-1	Gypsum	50	Gypsum	Gypsum	50-70
		NapSiFe	40	NapSiFe	NapSiFe	30-50
		NaKSiF6	10	NaKSiF6	2 0	
н	R6-1	GVDSUM	60-70	GVDSUM	GVDSUM	50-70
		NacSiFe	20	NapSiFe	NacSiFe	30-50
		NaKSiFe	10	NaKSiFr	11420110	50 50
		0				
I	<b>S</b> 1-1	Gypsum	40-50	Gypsum	Gypsum	50-70
		Na2SiF6	40	Na ₂ SiF ₆	Na ₂ SiF ₆	30-50
		NaKSiF6	10	NaKSiF6		
J	D4-1	Gypsum	50	Gypsum	Gypsum	50-70
		Na ₂ SiF ₆	40	Na2SiF6	Na2SiF6	30-50
		NaKSiF6	10	NaKSiF6		
ĸ	D2-1	Gypsum	50-60	Gypsum	Gypsum	50-70
		Na ₂ SiF ₆	30-40	Na ₂ SiF ₆	Na ₂ SiF ₆	30-50
		NaKSiF6	<10	NaKSiF6	_ •	

## Table 16 (continued)

_____

		< PLM	1>	< XRD>	< FTIR	>
Run No.	ID No.	Identity	Estd %	Identity	Identity ^a	Estd %
L .	<b>S4-</b> 1	Gypsum	60-70	Gypsum	Gypsum	50-70
		Na2S1F6 NaKSiF6	30 <10	Na2SIF6 NaKSiF6	Na2S1F6	30-50
м	D5-1	Gypsum	50-60	Gypsum	Gypsum	50-70
		Na2SiF6 NaKSiF6	30-40 <10	Na ₂ SiF ₆ NaKSiF6	Na ₂ SiF ₆	30-50
N	<b>S</b> 6-1	Gypsum	40-50	Gypsum	Gypsum	50-70
		Na ₂ SiF ₆ NaKSiF ₆	40-50 <10	Na2SiF6 NaKSiF6 CaSO4•0.5H2O	Na ₂ SiF ₆	30-50
				7 2		
0	R5-1	Gypsum Na2SiF6 NaKSiF6	50 40-50 <10	Gypsum Na2SiF6 NaKSiF6	Gypsum Na ₂ SiF6	50-70 30-50
Р	D3-1	Gypsum Na2SiF6 Na2SiF6	50 40-50	Gypsum Na2SiF6 NaKSiF6	Gypsum Na ₂ SiF6	50-70 30-50
		Nakotr6	<b>~10</b>	Narstr 6		
Q	D6-1	Gypsum Na ₂ SiF ₆ NaKSiF6	60 30-40 <10	Gypsum Na2SiF6 NaKSiF6	Gypsum Na ₂ SiF6	50-70 30-50
R	s2-1	Gypsum Na2SiF6 NaKSiF6	60 30-40 <10	Gypsum Na2SiF6 NaKSiF6	Gypsum Na ₂ SiF ₆	50-70 30-50

^a FTIR characterizations did not distinguish between Na and K fluosilicates, so all fluosilicates detected are reported as Na₂SiF₆.

## Table 17. Precipitated Solids Compositions from Evaporations A-R2

Run	ID	8			SO4				
No.	No.	evapd	۶P	%F	<b>%</b> S	%Si	&Ca	%K	%Na
A	R1-1	71.8	0.27	38.7	5.82	7.79	7.24	2.26	13.9
A2	R1-1	75.4	0.17	39.4	6.61	5.47	8.20	1.63	13.5
в	R2-1	81.5	0.38	36.0	6.99	8.01	8.97	1.67	13.2
С	D1-1	73.2	0.22	38.6	6.28	8.60	7.68	1.80	14.5
D	R3-1	75.5	0.11	29.2	10.50	6.29	12.60	0.08	11.3
Е	R4-1	67.2	0.33	36.6	6.40	8.88	8.27	1.94	13.0
E2	R4-1	71.8	0.21	35.0	7.16	6.60	9.15	2.56	15.5
F	<b>S</b> 5-1	73.4	0.18	39.4	6.74	8.25	8.22	1.95	14.4
G	S3-1	84.4	0.29	36.5	6.39	6.39	7.81	0.76	15.5
G2	S3-1	71.1	0.11	36.5	6.55	4.31	8.26	0.04	14.1
н	R6-1	82.8	0.17	37.3	7.17	7.17	8.86	1.66	14.0
1 _	SI-I	78.0	0.22	38.1	6.48	6.48	7.93	1.76	14.4
J	D4-1	70.6	0.25	33.2	7.15	7.15	8.98	1.79	12.7
77	<b>DO 1</b>	76 0	0 27	25 F	<i>c c c c c c c c c c</i>	<i>c c c c c c c c c c</i>		1	
N VO	D2-1	/0.9 60 F	0.37	35.5	0.03	b.03	8.34	1.98	13.4
κz	D2-1	09.5	0.31	32.1	0.00	5.42	8.38	1.37	13./
т.	S/_1	72 1	0 36	33 0	7 10	7 10	0 22	1 65	10 7
м	D5-1	72.1 73 A	0.30	33.9	8 04	7.19	9.22	10 50	12.1
N	S6_1	75 /	0.17	30 1	6 59	7.40	9 04	2 12	14 1
0	B5-1	76 1	0.04	33.4	8 13	7 27	10 10	10 60	12.2
P	NJ-1	73 2	0.29	24 7	8 7/	5 29	10.10	10.00	12.2
*	05-1	13.2	0.10	2301	0./4	2.29	10.70	0.05	13.0
0	D6-1	71.7	0.13	36.3	6.83	8.36	8.34	1 70	14 3
• 02	D6-1	77.6	0.10	35.6	6.70	5.00	8 75	1 95	10 7
****	201		~•±0	55.0	0.70	2.00	0.75	1.20	±
R	s2-1	75.8	0.37	35.4	6.71	8,00	8.52	1.88	13.2
R2	s2-1	68.6	0.68	33.4	6.73	4.72	8.89	1.92	13.6

Table 18. Precipitated Solids Molar Compositions from Evaporations A-R2

		<		me	oles/1	00 g		>	<	me	ole ra	tios	>
Run	ID			SO4								F:	(Na+K)
No.	No.	Р	F	ຣີ	si	Ca	к	Na	F:Si	Ca:S	F:Na	(Na+K)	:Si
_	-1 1				0 077	0 1 0 1	0 0577	0 605	7 04	1 00	2 27	2 00	0 00
A	R1-1	0.009	2.04	0.182	0.277	0.181	0.05//	0.605	1.34	1.00	3.3/	3.08	2.39
A2	R1-1	0.005	2.07	0.206	0.195	0.205	0.0416	0.587	10.65	0.99	3.53	3.30	3.23
в	R2-1	0.012	1.89	0.218	0.285	0.224	0.0427	0.574	6.64	1.03	3.30	3.07	2.16
С	D1-1	0.007	2.03	0.196	0.306	0.192	0.0460	0.631	6.64	0.98	3.22	3.00	2.21
D	R3-1	0.004	1.54	0.327	0.224	0.314	0.0020	0.492	6.86	0.96	3.13	3.11	2.20
	D4 1	0 011	1 0 2	0 200	0 216	0 206	0 0406	0 565	6 00	1 0 2	2 / 1	2 1 2	1 05
<u>с</u> по	R4-1	0.011	1.93	0.200	0.310	0.200	0.0490	0.505	7 94	1 00	3.41 3.73	3.13	1.90
ΕZ	R4-1	0.007	1.84	0.223	0.235	0.228	0.0654	0.0/4	/.04	1.02	2.13	2.49	3.10
F	<b>S</b> 5-1	0.006	2.07	0.210	0.294	0.205	0.0498	0.626	7.06	0.98	3.31	3.07	2.30
G	s3-1	0.009	1.92	0.199	0.228	0.195	0.0194	0.674	8.44	0.98	2.85	2.77	3.05
G2	s3-1	0.004	1.92	0.204	0.153	0.206	0.0010	0.613	12.52	1.01	3.13	3.13	4.00
н	R6-1	0.005	1.96	0.224	0.255	0.221	0.0424	0.609	7.69	0.99	3.22	3.01	2.55
I	S1-1	0.007	2.01	0.202	0.231	0.198	0.0450	0.626	8.69	0.98	3.20	2.99	2.91
J	D4-1	0.008	1.75	0.223	0.255	0.224	0.0457	0.552	6.86	1.00	3.16	2.92	2.35
к	11	0.012	1.87	0.207	0.236	0.208	0.0506	0.583	7.92	1.01	3.21	2.95	2.68
82	D2-1	0 010	1 85	0 205	0 193	0 209	0 0350	0.505	9 57	1 02	3 10	2 93	3 27
112	D2-1	0.010	1.05	0.205	0.195	0.209	0.0330	0.330	2.51	1.02	3.10	2.55	5.21
L	<b>S</b> 4-1	0.012	1.78	0.224	0.256	0.230	0.0421	0.552	6.97	1.03	3.23	3.00	2.32
М	D5-1	0.005	1.75	0.251	0.266	0.250	0.2685	0.570	6.56	1.00	3.07	2.08	3.15
N	S6-1	0.021	2.02	0.206	0.268	0.201	0.0542	0.613	7.53	0.98	3.30	3.03	2.49
0	R5-1	0.009	1.76	0.263	0.259	0.252	0.2710	0.531	6.79	0.96	3.31	2.19	3.10
Р	D3-1	0.003	1.30	0.273	0.188	0.267	0.0012	0.565	6.90	0.98	2.30	2.29	3.01
0	D6-1	0 004	1 91	0 213	0 298	0 208	0 0434	0 622	6 42		3 07	2 87	2 24
$\sim$	D0-1 D6 1	0.004	1 97	0.210	0.170	0.200	0.0100	0.022	10 52	1 04	2.01	2.07	2.24
QΖ	D9-1	0.003	1.0/	0.209	0.1/6	0.210	0.0490	0.552	10.55	1.04	3.39	3.11	3.30
R	s2-1	0.012	1.86	0.209	0.285	0.213	0.0480	0.572	6.54	1.02	3.26	3.01	2.18
R2	s2-1	0.022	1.76	0.210	0.168	0.222	0.0491	0.592	10.46	1.06	2.97	2.74	3.81
							Avera	ages	7.90	1.00	3.16	2.89	2.75
							Std.	Devn.	1.68	0.03	0.25	0.31	0.56
							c.v	.'s	21	3	8	11	20

Results of material characterizations showed that the predominant compounds precipitated when the solutions were concentrated by evaporation were gypsum and Na₂SiF₆. The only other crystalline compound detected with any frequency was NaKSiF₆. Quantitative estimates made by PLM and FTIR agreed that gypsum contents were higher than those of the fluosilicate compounds. Usually, gypsum content was estimated to be slightly over 50%, Na₂SiF₆ content was slightly under 50%, and any difference was accounted for by NaKSiF₆. A typical ratio of gypsum to fluosilicate for the group of solid precipitated from the 18 pond water samples would be 60:40.

Data in Table 18 show that the average observed mole ratio Ca:S equaled one as would be expected for gypsum. The average ratio F:Si (= 7.9) is higher than that expected for fluosilicate compounds, the ratios F:Na and F:(Na+K) bracket the expected value of 3.0, and the ratio (Na+K):Si is higher than expected (2.75 versus 2.0). Assuming that all Ca and S in the solids was present in the form of gypsum, values for the weight percent gypsum were calculated from %Ca and %S contents. The calculated gypsum contents ranged from 31.1% to 54.1% (Ca basis) and from 31.3% to 56.4% (S basis). Means were 37.8% and 37.9%, and standard deviations were 4.87% and 5.32% based on Ca and S, respectively. Similar calculations of sodium fluosilicate contents were made based on %Na, % Si, and %F. The respective ranges observed were 46.2% to 63.4%, 28.9% to 59.5%, and 40.8% to 65.0%. Averages and standard deviations, in parentheses, were 55.5% (3.96%), 45.8% (8.60%), and 58.4% (5.45%) based on Na, Si, and F, respectively.

The sample compositions calculated from chemical analyses gave a slightly different distribution of gypsum and fluosilicate compounds than that estimated by materials characterizations methods. Rather than a ratio gypsum:fluosilicate of 60:40, the analytical data suggest a composition approximately 40% gypsum, 50-55% fluosilicate, and 5-10% unaccounted material. Considering that the materials characterizations techniques are primarily qualitative rather than quantitative methods, compositions estimated by the two approaches are in reasonable agreement.

## **EVAPORATIONS AT 40°C**

Since solids precipitated during the initial evaporation experiments did not contain chukhrovite, which had been detected in sediments from unevaporated samples, additional tests were conducted to determine whether slower evaporations and more gradual formation of precipitating phases might induce chukhrovite formation. These tests were run on the six samples which had been collected at chemical plant water intakes, e.g., the pond-to-plant return water samples.

Evaporations were conducted in the same manner as those described above, except the bath temperature was set at 40°C, and the heater was turned off at the end of each workday. For these conditions, total times needed to evaporate samples to the target volumes ranged from about 90 to 98 hours.

Starting solutions were reanalyzed prior to beginning the evaporation runs; compositions are given in Table 19. Compositions of solutions recovered after the evaporation runs are given in Table 20. The evaporation ratios and comparisons of concentration and evaporation ratios, which were calculated as describe above, are listed in Table 21. Results from materials characterizations by PLM and XRD of solids collected from the evaporated samples are in Table 22. Table 23 contains the analytical data on the solids and mole ratios which were calculated to assist in evaluating the characterization data.

Table 19. Gypsum Pond Water 40°C Evaporation Experiments

Run No.	ID No.	рН 	% P 	% F 	ppm s04-s	ppm Si	ppm Al	ppm Ca	ppm Fe	ppm K 	ppm Mg	ppm Na	ppm NH4-N 
1	R1-1	1.64	0.882	1.05	2801	2713	297	1142	180	425	381	2212	1713
2	R2-1	1.61	1.051	0.72	1515	2094	134	1614	326	383	356	2250	400
3	R3-1	1.89	0.210	0.42	1690	111 <b>2</b>	78	905	79	118	202	1288	566
4	R4-1	1.56	1.005	1.02	1746	2776	232	1104	415	340	542	2001	464
5	R6-1	1.67	0.501	0.71	1602	2017	113	1242	117	304	334	2155	<10
6	R5-1	1.76	0.433	0.64	1613	1767	194	1224	157	178	156	1634	555

# Starting Solution Compositions

# Recovered Solution Compositions

Run No.	% evapd	рH	% P	% F 	ppm S04-S	ppm Si	ppm Al	ppm Ca	ppm Fe	ppm K	ppm Mg	ppm Na	ppm NH4-N
1	72.4	0.76	3.22	2.41	8091	5911	1143	1155	707	393	1278	1879	6460
2	68.5	0.79	3.45	1.02	2533	2707	412	2017	1032	418	1042	2100	1465
3	74.5	1.23	0.82	1.02	4646	2684	312	992	326	447	355	2664	2477
4	71.6	0.61	3.63	2.19	4650	5766	798	1634	1399	363	1769	1650	1603
5	75.0	0.81	2.02	1.22	3762	3458	463	1388	505	458	971	2042	20
6	77.0	0.93	1.91	1.70	4154	4479	881	1479	722	428	708	2014	2430

Table	20.	Comparisons	of	Concentration ^a	and	Evaporation	Ratios ^b	for	40°C
		Evaporation	s						

			<		- Cond	centrat	cion ra	atio/Ev	vaporat	cion r	ratio -		>
Run No.	ID No.	Evapn ¹ ratio	р Р	F	so4 s	Si	Al	Ca	Fe	ĸ	Mg	Na	NH4 N
1	R1-1	3.62	1.01	0.63	0.80	0.60	1.06	0.28	1.08	0.26	0.93	0.23	1.04
2	R2-1	3.17	1.03	0.45	0.53	0.41	0.97	0.39	1.00	0.34	0.92	0.29	1.15
3	R3-1	3.92	1.00	0.62	0.70	0.62	1.02	0.28	1.05	0.97	0.45	0.53	1.12
4	R4-1	3.52	1.03	0.61	0.76	0.59	0.98	0.42	0.96	0.30	0.93	0.23	0.98
5	R6-1	4.01	1.00	0.43	0.59	0.43	1.02	0.28	1.08	0.38	0.73	0.24	-
6	R5-1	4.35	1.01	0.61	0.59	0.58	1.04	0.28	1.06	0.55	1.04	0.28	1.01
	Avera	ge	1.01	0.56	0.66	0.54	1.02	0.32	1.04	0.47	0.83	0.30	1.06
	std.	Devn.	0.013	0.094	0.11	0.093	0.036	0.066	0.049	0.26	0.21	0.11	0.073
	c.v.		1	17	16	17	4	21	5	57	26	38	7

bEvaporation (Evapn) ratio = 100/(100 - % evaporated)

		<		W	eight	8	>		
	ID								
Run	No.	Р	F	so ₄ -s	Si	Ca	K	Na	
		·							
1	R1-1	0.46	38.0	5.52	8.74	6.77	1.90	14.4	
2	R2-1	0.27	39.1	6.30	9.71	8.13	2.11	13.8	
3	R3-1	0.13	24.1	10.30	5.68	12.80	0.13	10.0	
4	R4-1	0.23	36.6	5.75	8.89	7.21	1.87	15.9	
5	R6-1	0.22	40.2	4.29	9.62	5.39	2.55	16.6	
6	R5-1	0.23	30.1	8.29	8.50	11.00	0.77	11.8	

# Table 21. Compositions of Solids from Pond Water Evaporations at 40°C

<			Mol	es/100	>		
ID No.	Р	F	so ₄ -s	Si	Ca	K	Na
							~ ~ ~
R1-1	0.015	2.00	0.17	0.31	0.17	0.049	0.63
R2-1	0.009	2.06	0.20	0.35	0.20	0.054	0.60
R3-1	0.004	1.27	0.32	0.20	0.32	0.003	0.43
R4-1	0.007	1.93	0.18	0.32	0.18	0.048	0.69
R6-1	0.007	2.12	0.13	0.34	0.13	0.065	0.72
R5-1	0.007	1.58	0.26	0.30	0.27	0.020	0.51
	ID No. R1-1 R2-1 R3-1 R4-1 R6-1 R5-1	<pre>ID No. P ID R1-1 0.015 R2-1 0.009 R3-1 0.004 R4-1 0.007 R6-1 0.007 R5-1 0.007</pre>	<pre>ID No. P F IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</pre>	<       Mol         ID       No.       P       F       SO4-S         R1-1       0.015       2.00       0.17         R2-1       0.009       2.06       0.20         R3-1       0.004       1.27       0.32         R4-1       0.007       1.93       0.18         R6-1       0.007       2.12       0.13         R5-1       0.007       1.58       0.26	<       Moles/100         ID       No.       P       F       SO4-S       Si                R1-1       0.015       2.00       0.17       0.31         R2-1       0.009       2.06       0.20       0.35         R3-1       0.004       1.27       0.32       0.20         R4-1       0.007       1.93       0.18       0.32         R6-1       0.007       2.12       0.13       0.34         R5-1       0.007       1.58       0.26       0.30	<       Moles/100 g         ID       No.       P       F       SO4-S       Si       Ca         R1-1       0.015       2.00       0.17       0.31       0.17         R2-1       0.009       2.06       0.20       0.35       0.20         R3-1       0.004       1.27       0.32       0.20       0.32         R4-1       0.007       1.93       0.18       0.32       0.18         R6-1       0.007       2.12       0.13       0.34       0.13         R5-1       0.007       1.58       0.26       0.30       0.27	<       Moles/100 g          ID       No.       P       F       S04-S       Si       Ca       K         R1-1       0.015       2.00       0.17       0.31       0.17       0.049         R2-1       0.009       2.06       0.20       0.35       0.20       0.054         R3-1       0.004       1.27       0.32       0.20       0.32       0.003         R4-1       0.007       1.93       0.18       0.32       0.18       0.048         R6-1       0.007       2.12       0.13       0.34       0.13       0.065         R5-1       0.007       1.58       0.26       0.30       0.27       0.020

		<		Mole ratios		>	
Run	ID No.	Ca:S	F:Si	F:Na	Na:Si	F: (Na+K)	(Na+K) Si
1	R1-1	0.98	6.43	3.19	2.01	2.96	2.17
2	R2-1	1.03	5.95	3.43	1.74	3.15	1.89
3	R3-1	0.99	6.27	2.92	2.15	2.89	2.17
4	R4-1	1.00	6.09	2.79	2.18	2.61	2.34
5	R6-1	1.01	6.18	2.93	2.11	2.69	2.30
6	R5-1	1.06	5.24	3.09	1.70	2.97	1.76
Aver	age	1.01	6.03	3.06	1.98	2.88	2.10
std.	Devn.	0.029	0.42	0.23	0.21	0.20	0.23
c.v.		3	7	8	11	7	11

		< PLM	>	< XRD>
Run	ID			
No.	No.	Identity	Estd %	Identity
1	R1-1	Gypsum	30-40	Gypsum
		Na2SiF6	60-70	Na2SiF6
				NaKSiF ₆
2	R2-1	Gypsum	40-50	Gypsum
		Na ₂ SiF ₆	50-60	Na ₂ SiF ₆
				NaKSiF6
3	R3-1	Gypsum	70-80	Gypsum
		Na2SiF6	20-30	Na2SiF6
4	R4-1	Gypsum	30-40	Gypsum
		Na ₂ SiF ₆	60-70	Na ₂ SiF ₆
				NaKSiF6
5	R6-1	Gypsum	50	Gypsum
		Na ₂ SiF ₆	50	Na2SiF6
				NaKSiFe
				CaSO4.0.5H20
6	R5-1	Gypsum	50	Gypsum
		Na2SiF6	50	Na ₂ SiF ₆

## Table 22. Characterizations of Solids from Pond Water Evaporations at 40°C

Table 23. Gypsum Pond Water Evaporations with Added Metal Ions--Experimental Design and Solution Compositions

Starting Solutions Coded Factor Levelsa <---mg/Kg ----> Run K Al Fe 8 P 8 F Na к Al Fe No. Na ____ ----____ ____ ____ ___ . ___ ____ -----____ --1 0.66 0.76 1995 276 172 217 1 -1 -1 -1278 173 1080 2 +1-1 -1 +1 0.71 0.70 2660 3 -1 +1 -1 +1 0.72 0.71 2000 546 171 1030 0.62 2620 626 171 208 4 +1 -1 -10.68 +1 5 0.67 0.74 1930 270 1000 1020 -1 -1 +1 +1 1020 2920 273 208 6 +1 -1 0.68 0.75 +1 -1 0.68 0.75 1940 939 1030 218 7 -1 +1 +1 -1 +1 +1 +1 0.67 0.77 2955 1083 1010 1085 8 +1a Factor Levels: "-1" = no addition "+1" = Na & K added as chlorides; Al & Fe added as nitrates

#### Evaporated solutions

Run	8			<	- mg	/kg	>
No.	evapd	% P	% F	Na	K	Al	Fe
1	72.6	2.51	1.53	2177	384	642	826
2	71.0	2.49	0.80	2855	497	641	3420
3	70.9	2.41	1.15	2225	364	622	3621
4	74.1	2.58	0.77	3962	748	661	822
5	75.0	3.00	1.66	2229	500	4480	4580
6	73.0	2.71	0.95	3377	655	4108	886
7	73.0	2.75	1.28	2642	509	4118	877
8	72.7	2.35	0.88	4423	805	3675	3603

Data in Table 21 helped reduce some of the uncertainties about element distribution behaviors that was present in the data from the initial evaporation experiments. Average values of the quotient (concentration ratio:evaporation ratio) for P, Al, Fe, and NH₄-N all equaled 1.0, and the standard deviations are 7% or less of the means. The data indicate that there were essentially no losses of these elements from the solution phases by precipitation or volatilization during the evaporations. The average quotient calculated for Mg is 0.83, but 4 of the 6 runs gave values that were 0.9 or higher. Since results from the previous set of evaporations indicated, albeit with high scatter, no Mg losses from solution, it is reasonable to assume that is the case with the latter 6 runs. Changes in solution phase concentrations for F, SO₄-S, Si, Ca, K, and Na indicate all of these were removed from solution during the evaporations,

Materials characterizations results showed that the principal constituents of solids precipitated during the lower temperature evaporations were gypsum, Na₂SiF₆, and NaKSiF₆. The mole ratios Ca:S, F:Si, F:Na, Na:Si, F:(Na+K), and (Na+K):Si were in good agreement with results that would be expected for a mixture of gypsum, Na₂SiF₆, and NaKSiF₆. The average for Ca:S was 1.01, which indicates no chukhrovite (Ca:S = 4.0) was present. Averages for F:Si (6.03), F:Na and F:(Na+K) (both about 3.0), and Na:Si and (Na+K):Si (about 2.0) all are consistent with Na₂SiF₆ containing traces of NaKSiF₆.

#### MASS BALANCE EXPERIMENTS

In the evaporation experiments described above there were minor losses of material during operations to separate and collect the solution and solid phases and to wash the solids. Therefore, it was not possible to obtain a precise measurement of the balance between starting and recovered materials. An additional experiment was conducted to determine whether significant volatilizations of F, Si, and other elements might have occurred.

The pond water solution used for the material balance experiments was a composite prepared from equal volumes of the 18 collected samples. Its pH was 1.55 and the composition was 0.66% P, 0.76% F, 1695ppm SO₄-S, 1995ppm Na, 276ppm K, 172ppm Al, 1155ppm Ca, 216ppm Fe, 286ppm Mg, 1910ppm Si, and 592ppm NH₄-N.

Weighed aliquots (150 grams each) of the composite solution were evaporated at 60°C until weights were reduced to approximately 25%, 50%, and 75% of the initial weights. After evaporations, no separations of solution and solid phases were made. HCl was added to each sample to solubilize any precipitated material, and the total sample was analyzed. The amounts of recovered P, F, Si, etc. were calculated and compared with the amounts present in the initial sample aliquots. Up to about 75% sample evaporation, the recovered amounts of solution components equaled the input amounts within experiment error.

Since volatilization of F was of particular interest, data for this element were subjected to regression analyses to evaluate how F composition behaved with changing degree of evaporation. The analysis showed that the fraction F recovered (i.e., F recovered/F input) was not dependent on the % sample evaporated. The regression equation for the data is:

```
Fraction F recovered = 0.982 - 0.0004(% evaporated)
```

The standard error in the constant term was 0.030, and the standard error in the coefficient of the (% evaporated) term was 0.0005. With a confidence range of plus or minus one standard error, the regression equation predicts that the fraction of F recovered in the nonvolatile fraction was 1.0, regardless of the percent

of the sample that was evaporated. The regression correlation coefficient was low ( $R^2 = 0.20$ ), which also indicates F recovery had little or no dependence on the percent evaporated.

Based on these results it is reasonable to assume that when the gypsum pond water samples were evaporated to remove water and concentrate them to saturation, the principal redistribution of solution constituents was by precipitation. No measurable volatilization of F, Si, or other elements occurred as long as the degree of sample evaporation was less than about 75%.

### **EVAPORATIONS WITH ADDED CATIONS**

Since neither chukhrovite nor the ferric phosphate, which had been detected in pond water sediments, were detected during evaporations of pond water samples, additional experiments were conducted to determine if formations of either of these compounds could be induced. Samples were prepared by adding Al, Fe, Na, and K to a composite solution of several pond water samples. The levels of additives were chosen according to an experimental design, listed in Table 23. Aliquots of the treated solutions were evaporated to remove about 70% of the starting aliquot weight. Solution and solid phases were separated, solids were washed with methanol, and dried. The solutions were analyzed, and the solids were characterized by XRD. Compositions of starting solutions and of the solutions recovered after evaporations also are listed in Table 23.

Concentrations in the starting and final solutions were compared to evaluate the effects of the additives by calculating the concentrations that would have resulted if no changes occurred other than increases due to removal of water. The final concentrations actually observed were compared with the calculated concentrations. Examinations of ratios of observed to calculated concentrations given in Table 24 show that, within experimental error, concentrations of P, Al, and Fe were equal to the values that would occur if there were no losses of these elements from solution. Concentrations of F, Na, and K were lower than would be expected if the elements remained in solution. This indicates these latter three elements were removed from the solution phases during the treatments. Comparisons of mean ratio values for P and F at high and low levels of the treatment factors (Table 24) show that an addition of either Na or K caused a removal of F from solution. Additions of Al or Fe did not cause this effect.

XRD characterizations of solids collected from samples after evaporations (Table 25) detected gypsum, Na₂SiF₆, and NaKSiF₆ in all precipitated phases. The ferric (K,NH₄,H) phosphate compound was detected in five cases, however amounts of this material were very low and identifications from X-ray diffraction patterns were tentative. There is no evidence that additions of Fe caused a substantial increase in the precipitation of the ferric phosphate compound. Neither did the addition of Al cause precipitation of chukhrovite.

#### Table 24. Gypsum Pond Water Evaporations with Added Metal Ions--Effects of Additives

Run		Р	F	Na	к	Al	Fe
1		1.04	0.55	0.30	0.38	1.02	1.04
2		1.02	0.33	0.31	0.52	1.07	0.92
3		0.97	0.47	0.32	0.19	1.06	1.02
4		0.98	0.32	0.39	0.31	1.00	1.02
5		1.12	0.56	0.29	0.46	1.12	1.12
6		1.08	0.34	0.31	0.65	1.09	1.15
7		1.09	0.46	0.37	0.15	1.08	1.09
8		0.97	0.31	0.41	0.20	0.99	0.91
	Mean	1.03	0.42	0.34	0.36	1.05	1.03
	Std devn	0.06	0.10	0.05	0.18	0.04	0.09

Concentration ratios: observed to calculated

Calculated concentration = (Initial concentration)/(1-fraction evaporated)

Mean Ratios at High (+1) and Low (-1) Levels

		Р	F		P	F
Hi	Na	1.01	0.32	Hi Al	1.06	0.42
Lo	Na	1.05	0.50	Lo Al	1.00	0.42
Hi	к	1.00	0.39	Hi Fe	1.02	0.42
Lo	ĸ	1.06	0.44	Lo Fe	1.05	0.42

Table 25.	Gypsum Pond Water Evaporations with Added	
	Metal IonsSolids Recovered After Evaporations	5

Run	A	в	с	D	Е	F
1	+	+	+			
2	+	+	+		(+)	
3	+	+	+		(+)	
4	+	+	+	(+)		(+)
5	(+)	+	+		(+)	+
6	(+)	+	+			+
7	+	+	+		(+)	
8	+	+	+		(+)	

Phases detected by XRD

"+" = Positive identification "(+)" = Tentative identification

Phases:  $A = CaSO_4 \cdot 2H_2O$ 

 $B = Na_2SiF_6$ 

 $C = NaKSiF_6$ 

 $D = K_2 SiF_6$ 

 $E = Fe_3(K, NH_4, H)H_8(PO_4)6.6H_2O$ 

 $F = CaSO_4 \cdot 0.5H_2O$ 

#### **SECTION 5**

## TREATMENTS OF GYPSUM POND WATER SAMPLES

A number of experiments were conducted to explore the potential for reducing the soluble F content of gypsum pond water samples by treatments with materials which might cause the precipitation of F compounds such as chukhrovite or fluosilicates. In most cases, materials were added in excess and it was impractical to detect small quantities of reaction products in the solid phases separated from the reaction mixtures. Changes in solution phase compositions were used to determine whether significant removal of elements of interest had occurred.

## TREATMENTS WITH AI AND Ca COMPOUNDS

These were exploratory experiments to investigate whether increased concentrations of Al and Ca selectively removed F and/or P from the solutions. The starting solution used in each test was a composite of collected pond water samples. Analysis of the composite showed that it contained 6720 mg/Kg P, 7195 mg/Kg F, 1780 mg/Kg SO₄-S, and 874 mg/Kg Si. The added materials were gypsum, aluminum hydroxide, aluminum powder, aluminum phosphate, kaolin, and calcium hydroxide. All were commercial reagent chemicals. The amount of each reagent added (given in Table 26) supplied 1.0 gram Ca or Al to 100 grams of solution.

Material additions were made according to the scouting experimental design listed in Table 26. Materials were added to solution phases contained in plastic conical flasks. The reaction mixtures were shaken on an oscillatory shaker platform. Aliquots of the mixtures were collected after they had reacted for 2 days and again after they had reacted for 9 days. Samples were withdrawn and filtered through membrane filters (0.65-micron pore size), and the filtrates were analyzed to determine solution phase compositions.

Compositions of the filtrates and mean responses calculated for the two levels of the treatment factors are given in Table 27. Treatment effects are judged by inspecting differences between mean responses at high and low levels. A negative value for the difference between the mean concentration of a constituent at the +1 level and the mean concentration at the -1 level indicates that the treatment reduced the concentration of that constituent.

Inspection of data in Table 27 shows that relatively large drops in F concentrations occurred when Ca(OH)₂, AlPO₄, kaolin, and Al powder were added, but not when gypsum and Al(OH)₃ were added. Phosphate and Si concentrations in the first group of filtrates appear to have been affected more by additions of Al powder and Ca(OH)₂ than by the other treatment factors. After reaction for 9 days, P concentrations appear to have been reduced by treatments with all compounds except gypsum.

#### NEUTRALIZATIONS WITH PHOSPHATE ORE FRACTIONS

It is known that neutralization of gypsum pond water with limestone reduces F and P concentrations by precipitating insoluble fluoride and phosphate compounds. Therefore, neutralizing pond water with waste products from higher carbonate content phosphate ores might be a lower cost way to reduce soluble F levels in gypsum ponds.

Table 26. Treatments of Gypsum Pond Water with Ca and Al Compounds

_

#### Experimental design

<			Factor I	evels			
Run #	<b>X1</b>	<b>X</b> 2	Х3	X4	X5	<b>X</b> 6	
14625-1	-1	-1	-1	1	-1	1	
14625-2	1	-1	-1	-1	1	1	
14625-3	-1	1	-1	-1	-1	-1	
14625-4	1	1	-1	1	1	-1	
14625-5	-1	-1 .	1	1	1	-1	
14625-6	1	-1	1	-1	-1	-1	
14625-7	-1	1	1	-1	1	1	
14625-8	1	1	1	1	-1	1	

Material added at levels = +1; not added at levels = -1

Factors and amounts added to 100 grams pond water:

X1	=	Gypsum, 5.0 grams	X4	Ħ	AlPO4, 5.0 grams
X2	=	Al(OH)3, 3.0 grams	X5	=	Kaolin, 5.0 grams
Х3	=	Al powder, 1.0 gram	X6	*	$Ca(OH)_2$ , 2.0 grams

Initial concentrations in gypsum pond water sample composite:  $P = 6720 \text{ mg/Kg}, F = 7195 \text{ mg/Kg}, SO_4S = 1780 \text{ mg/Kg}, Si = 874 \text{ mg/Kg}.$ 

< first filtrate group>		< second filtrate group>						
Run	mg/Kg P	mg/Kg F	mg/Kg SO4-S	mg/Kg Si	mg/Kg P	mg/Kg F	mg/Kg SO4-S	mg/Kg Si
14625-1	4040	67	1985	340	3390	60	1960	1520
14625-2	5050	1040	790	480	5000	90	820	1015
14625-3	6767	7430	1850	901	6552	7070	1790	345
14625-4	8050	2820	2580	440	4300	700	2460	710
14625-5	4100	329	2470	380	3480	240	2760	2170
14625-6	7120	5600	2060	250	6550	5780	2380	440
14625-7	2560	91	1630	87	1300	100	1810	93
14625-8	1940	108	2500	160	1310	60	3105	97
<u>Means of</u>								
all runs	4953	2186	1983	380	3985	1763	2136	799
<u>Means at</u>	indicated	factor le	evels					
X1 = +1	5540	2392	1983	333	4290	1658	2191	566
X1 = -1	4367	1979	1984	427	3681	1868	2080	1032
Diff.	1173	413	-1	-94	609	-210	111	-466
X2 = +1	4829	2612	2140	397	3366	1983	2291	311
X2 = -1	5078	1759	1826	363	4605	1543	1980	1286
Diff.	-249	853	314	34	-1239	440	311	-975
X3 = +1	3930	1532	2165	219	3160	1545	2514	700
X3 = -1	5977	2839	1801	540	4811	1980	1758	898
Diff.	-2047	-1307	364	-321	-1651	-435	756	-198
X4 = +1	4533	831	2384	330	3120	265	2571	1124
X4 = -1	5374	3540	1583	430	4851	3260	1700	473
Diff.	-841	-2709	801	-100	-1731	-2995	871	651
X5 = +1	4940	1070	1868	347	3520	283	1963	997
x5 = -1	4967	3301	2099	413	4451	3243	2309	601
Diff.	-27	-2231	-231	-66	-931	-2960	-346	396
x6 = +1	3398	327	1726	267	2750	78	1924	681
X6 = -1	6509	4045	2240	493	5221	3448	2348	916
Diff.	-3111	-3718	-514	-226	-2471	-3370	-424	-235

Table 27. Treatments of Gypsum Pond Water with Al and Ca Compounds--Concentrations in Flitrates and Treatment Effects

X1 = Gypsum,  $X2 = Al(OH)_3$ , X3 = Al powder,  $X4 = AlPO_4$ , X5 = Kaolin,  $X6 = Ca(OH)_2$  Clay-sized fractions (material passing through a 150-mesh sieve) of three phosphate ores, which had been collected from Florida for research on phosphate beneficiation, were used to test this concept. Experiments were conducted according to the experimental design listed in Table 28. The pond water solution used in the experiments was a composite prepared from several of the samples collected in Florida. Three clay fractions from ores of varying carbonate content (BL-17, BL-20, and BL-9) were used as neutralizing agents; compositions of these are given in Table 28. The design factors were clay reactant type (levels of XI = 1, 2, and 3 in order of carbonate content), amount of agent added (levels of X2 = 1 and 2), reaction time (X3 = 1 or 2), and addition of excess gypsum (levels of X4 = 1 and 2). The latter factor was included to determine whether the presence of solid gypsum might promote the formation of chukhrovite to precipitate a relatively greater amount of F than would be precipitated by calcium fluoride alone.

For each experimental run, 100 mL of solution was placed in a 500 mL plastic conical flask, the designed amounts of clay reactant and reagent gypsum were added, and the mixture was reacted with shaking for the designed time. After reaction, mixtures were transferred to a plastic centrifuge bottle and centrifuged to separate solid and solution phases. Solution phases were analyzed, and the response data (pH's and concentrations of F and P) are in Table 28.

Evaluations of results are in Table 29. For simple comparisons, mean responses for each factor level were calculated. An inspection of these shows that solution pH's and F and P concentrations changed in proportion to the clay reactant'scarbonate content. The degree of neutralization decreased in the order BL-17 >BL-20 >BL-9. Effects of the amount of reactant clay added and reaction time also were consistent with this trend. Decreases in F and P concentrations and increases in pH's were higher with the larger amounts of reactants and longer reaction times. Comparisons of differences in mean responses show the higher responses to these factors occurred with the higher carbonate-content clays. Additions of gypsum had negligible effects.

These exploratory tests demonstrate that neutralizing pond water with minus 150-mesh slimes from a dolomitic phosphate ore might be used to reduce soluble F concentrations in gypsum ponds. Results from several samples were analyzed for Mg. Concentrations in solutions treated with the BL-17 and BL-20 materials ranged from about 1300 ppm Mg to about 2200 ppm Mg. Since neutralizing gypsum ponds at operating acid plants with dolomitic reactants could cause undesirable amounts of Mg to report back into the phosphoric acid products, this treatment may be practicable only for cases where gypsum pile/pond systems are retired from active operations.

## TREATMENTS WITH ATTAPULGITE CLAY

This experiment was conducted to see whether a material which would be readily available to Florida phosphate producers could be used to remove F from gypsum ponds. Past research [14] has shown that several clay minerals react rapidly with acidic, F-containing solutions. One of the most reactive minerals was attapulgite which has been shown to be an important constituent of phosphate ore clay slimes. Therefore, treatment of gypsum ponds with phosphate clay slimes might introduce sufficient amounts of Al and excess Si into solution to precipitate chukhrovite or some other Al- or Si- fluoride thereby reducing soluble F levels in the ponds.

	Factor Levels					Responses			
Run									
No.	<b>X</b> 1	X2	Х3	X4	PH	ppm F	ppm P		
				540 GHD					
0		No trea	atments		1.69	8339	6987		
1	1	1	1	1	3.14	7736	6892		
2	1	2	1	1	3.55	1142	5764		
3	1	1	1	2	3.18	7770	6884		
4	1	2	1	2	3.23	7254	6776		
5	1	1	2	1	3.23	5682	6652		
6	1	2	2	1	3.73	654	5650		
7	1	1	2	2	2.88	4440	6436		
8	1	2	2	2	4.02	200	5378		
a	2	1	1	1	2.42	8310	7094		
10	2	2	1	1	3 20	5556	6752		
11	2	1	1	2	2.45	6538	5756		
10	2	2	1	2	3 18	6178	6602		
12	2	1	2	2	2 21	5610	7138		
14	2	2	2	1	2.21	1709	6004		
15	2	1	2	2	2 11	2634	7150		
15	2	1	2	2	2.41	1614	7150 E466		
10	2	2	2	2	3.20	1044	5466		
17	3	1	1	1	1.82	8692	7498		
18	3	2	1	1	2.02	8020	7610		
19	3	1	1	2	1.88	6656	6134		
20	3	2	1	2	2.15	8590	7650		
21	3	1	2	1	1.94	8600	7524		
22	3	2	2	1	2.12	6846	7572		
23	3	1	2	2	1.95	8688	7594		
24	3	2	2	2	2.15	7730	7578		
Factor	s ID's an	d Coded	Levels	:					
v1 – ¬	~~~+~~+ T	<b>D</b>		"1" DT	17 "0"-01	· วก "ว" ·	- 57 0		
$x_2 - x$	rang rang	tant ad	hoh	"1" - 0 "1" - 0	-⊥/ 2 —D1 "Э" —	∠v э · ⊑			
AZ = G	cams reac	imo h		⊥ — ∠ "1" — 1	∠ = "o" -	3			
A = R	eaction t	ine, nr:	<b>D</b> •	1 - 1 "1" - NT-	∠ = "o" -	Voc			
X4 = G	ypsum add	ea		т = ИО	. 2 . =	ies			
Reacta	nt Compos	itions:							
	8 P	8 :	F 8	Ca %	Mg % CO	3-C			

# Table 28. Treatments of Composite Pond Water Sample with Phosphate Rock Clay Fractions

BL-170.38 0.18 18.15 9.43 9.95 6.06 BL-20 0.41 12.00 4.86 1.51 BL-9 3.77 0.85 9.05 1.76 0.20

Table 29. Effects of Pond Water Treatments with Phosphate Rock Clay Fractions

	React	ant = B	L-17	Reac	tant =	BL-20	Reac	tant =	BL-9
Treatment Levels	рН	ppm F	ppm P	pH	ppm F	ppm P	рн	ppm F	ppm P
Means for									
reactant	3.37	4360	6304	2.78	5534	6495	2.00	7978	7395
X2 = 1	3.11	6407	6716	2.37	7273	6785	1.90	8159	7188
X2 = 2	3.64	2313	5892	3.19	3794	6206	2.11	7797	7603
X3 = 1	3.28	5976	6579	2.81	6646	6551	1.97	7990	7223
X3 = 2	3.47	2744	6029	2.75	4422	6440	2.04	7966	7567
X4 = 1	3.42	3804	6240	2.75	5319	6747	1.98	8040	7551
X4 = 2	3.33	4916	6369	2.81	5749	6244	2.03	7916	7239

Factor Contrasts

<u>Regression Analyses</u> for  $Y = a + b \cdot X1 + c \cdot X2 + d \cdot X3 + e \cdot X4$ 

	Y = pH	Y = ppm F	Y = ppm P
p? of momentation with			
data from 24 runs	0.915	0.637	0.445
Intercept "a"	3.19	8337	6636
Std error of "a"	0.21	1865	616
X1 Coefficient "b"	-0.684	1809	545
Std error of "b"	0.053	466	154
X2 Coefficient "c"	0.518	-2645	-329
Std error of "c"	0.086	761	252
X3 Coefficient "d"	0.067	-1826	-106
Std error of "d"	0.086	761	252
X4 Coefficient "e"	0.010	473	-229
Std error of "e"	0.086	761	252

Gypsum pond water samples with concentrations ranging 0.5% to 1.0% P and 0.4% to 0.7% F were treated with a commercial attapulgite clay to test this concept. Slurries of clay and pond water were reacted with shaking at ambient laboratory temperature for four days. Aliquots were removed and centrifuged to obtain solids for characterizations. The centrifugates were filtered through a 0.65-micron pore size membrane filter and sent for chemical analysis.

Solids recovered from the reaction mixtures were examined by PLM and XRD. These characterizations revealed mostly unreacted and partially decomposed clay particles. Other materials detected were gypsum, quartz, unidentified amorphous materials, and a few tentatively identified minor products. The minor products had properties that suggested they could be sodium potassium fluosilicate, calcium fluoride, and/or chukhrovite. None were consistently present in all samples or present in amounts sufficient to make positive identifications.

Analyses of the liquid phases showed no changes in F concentrations that were significantly greater than experimental error. Thus, treatments with the attapulgite did not cause measurable precipitation of chukhrovite or other F-containing compounds.

#### **SECTION 6**

#### APPLICATIONS OF CHEMICAL MODELING COMPUTER PROGRAMS

During the past two decades a number of chemical modeling computer programs have been developed to assist chemists, geologists, soil scientists, and others who have a need for information about equilibrium conditions in complex aquatic chemical systems [15,16]. These programs calculate distributions and activities of chemical species on the assumption than chemical equilibrium exists in the system. The computed species distributions can then be used to determine solubility status in the systems and evaluate cause and effect relationships which might change the systems.

Two of these computerized chemical modeling programs, WATEQ4F [17,18] and PHREEQE [19], were developed by the U.S. Geological Survey to model chemical reactions in surface and ground water hydrogeochemical systems. The programs calculate solution speciation and saturation states of the aqueous phase with respect to various mineral phases. An essential input for the computations is a chemical model of elements, soluble complexes, and solid phases, with appropriate formation or solubility product constants. These data and user supplied inputs for the analytical concentrations of the elements, pH, temperature, and pe are used to iteratively solve the appropriate mass and charge balance equations for the concentrations of the soluble chemical species and the saturation indices of the solid species that were included with the input model. (Note: pe is the negative logarithm of electron activity, and is a measure of oxidizing intensity in solution that is analogous to pH as a measure of solution acidity. pe is related to the experimentally determined redox potential, E_H, by pe =  $E_H(F/2.3RT)$ ; at 25°C, pe = 16.9E_H). Copies of the programs were acquired and tested with gypsum pond water analytical data to gain information about probable distributions of F, P, and other elements among various species that might exist in pond water solutions and to compare computed solubility conditions with experimental observations.

#### WATEQ4F

Initial tests with WATEQ4F revealed a significant shortcoming. The set of mass and charge balance equations that the program uses for chemical equilibrium model calculations did not include an entry for undissociated phosphoric acid. Therefore, at low pH's where a significant fraction of the total phosphate exists as undissociated phosphoric acid, the calculated chemical model was incorrect. The model equations used by WATEQ4F are part of the program code, and modifications of the program to add H₃PO₄ and other species important in a gypsum pond system model would require considerable revisions in the source code. Since an alternative program was available, no further evaluations were made with WATEQ4F.

#### PHREEQE

With the program PHREEQE, the chemical model of elements, aqueous species, and mineral phases are contained in an exterior data file. This can be modified by the user to include any pertinent chemical equilibria for which species formation constants are available. Thus, PHREEQE was capable of handling the chemical system needed to describe gypsum pond systems. After making the needed modifications to the chemical model data, this program was used to compute distributions of aqueous species and to evaluate saturation indices for mineral phases which might be in equilibrium with the pond water solutions.

The chemical data library supplied with PHREEQE contained values for approximately 200 soluble complexes and solid compounds comprised of the elements H, O, Ca, Mg, Na, K, Fe, Mn, Al, Ba, Si, Si, Cl, C, S, N, B, P. F, Li, and Br. This was modified to fit the chemical system of gypsum ponds by excluding data for species of little importance or those involving elements for which no analytical data was obtained (e.g.,

Mn, Ba, Sr, ..., Br). Table 30 contains a list of elements and soluble species contained in the model after the modifications.

Most equilibrium constants in Table 30 were taken from the PHREEQE and WATEQ4F data libraries [17-20]. Since neither of these contained an entry for  $SiF_4(aq)$ , a value for the formation constant of this species was estimated from values reported in the literature [21,22] using the Davies' equation to adjust reported values to values at zero ionic strength. The validity of this value for the constant is questionable since there is disagreement among several reported investigations of fluorine complexes with silicon about whether a stable SiF4(aq) species exits. Nevertheless, the derived value for SiF4(aq) formation was included in the PHREEQE model to obtain as much information as possible about species that could influence the distribution of F in gypsum pond solutions.

PHREEQE contains a procedure, called LOOK MIN, which computes ion activity products (IAP's) for solid compounds to test for saturation. The IAP for a given solid and the value of its solubility product constant (KT) at 25°C are used to compute the saturation index, SI=Log(IAP/KT). The program user must define the appropriate stoichiometries for dissolution reactions of interest. Those included in the gypsum pond chemical model are listed in Table 31. In most cases, solubility product constant values were taken from the thermodynamic data included with PHREEQE and WATEQ4F or from chemical reference data handbooks.

Solubility product constants for Na and K fluosilicates were not available in the reference literature, and values were calculated from data on the solubilities of these compounds in water [24]. Calculations were made assuming no hydrolysis of the fluosilicate ion and using the Davies equation to adjust values to conditions of zero ionic strength.

No data was found to permit similar calculations of solubility product constants for chukhrovite or the Fe-(NH₄,K)-PO₄ compounds. When these compounds were included in chemical models their LOG KT values were set to zero. The computations generated IAP values which, as discussed later, were used to obtain estimates of the solubility product constant values.

## COMPUTATIONS WITH SOLUTION/SEDIMENT SAMPLE DATA

PHREEQE was evaluated with data on compositions of solutions that were separated from the sample sediments collected in February 1989 to determine how well the computed model description matched experimental observations. Results are given in Table 32. Molalities and activities of soluble species with concentrations above 0.00001 molal are given in the first section of the table; species with computed concentrations less than 0.00001 molal are tallied in the second section. Computed SI values for several solid phases that might occur in gypsum pond systems also are listed. The solid phases considered for these computations were limited to those contained in the initial database plus the alkali fluosilicates.

та	h	٦.	2	- 30
<b>T G</b>		_		

Master Species and Complex Species in PHREEQE Chemical Model

NO.	MASTER SPECIES	NO.	SPECIES	Log K ^a	NO.	SPECIES	Log Ka
1	 н+	31	OH	-14.00	119	Fe(OH)4 ⁻	-21.60
2	e-	40	HSO4-	1.99	120	$Fe_{2}(OH)_{2}^{+4}$	-2.95
3	H ₂ 0	50	NH3(aq)	-9.24	121	$Fe_{3}(OH)_{4}^{+5}$	-6.30
4	Ca+2	52	NH4SO4-	1.11	122	FeC1+2	1.48
5	Mg ⁺²	65	$HPO_4 - 2$	12.35	123	FeCl2 ⁺	2.13
6	Na ⁺	66	H ₂ PO ₄ -	19.55	124	FeCl3	1.13
7	к+	67	H3PO4	21.70	125	FeSO4 ⁺	3.92
10	A1+3	69	HF(aq)	3.17	126	$Fe(SO_4)_2^-$	5.42
13	H4SiO4	70	HF2-	3.75	127	$FeHPO_4^+$	17.77
14	cl-	75	CaOH+	-12.60	128	$FeH_2PO_4^{+2}$	24.98
16	so4-2	78	CaSO4	2.31	129	FeF+2	6.20
19	P04-3	79	CaPO4 ⁻	6.46	130	FeF2 ⁺	10.80
20	F-	80	CaHPO4	15.09	131	FeF3	14.00
23	$NH_4^+$	81	$CaH_2PO_4^+$	20.96	150	AloH+2	-4.99
24	Fe ⁺³	82	CaF ⁺	0.94	151	$Al(OH)_2^+$	-10.10
		85	MgOH+	-11.79	152	Al(OH)3	-16.00
		88	MgSO4	2.25	153	$Al(OH)_4^-$	-23.00
		89	MgPO ₄ -	6.59	154	Also ₄ +	3.02
		90	MgHPO4	15.22	155	Al(SO4)2	4.92
		91	MgH2PO4 ⁺	21.07	156	AlF ⁺²	7.01
		92	MgF ⁺	1.82	157	AlF2 ⁺	12.75
		97	NaSO4-	0.70	158	AlF3	17.02
		98	NaHPO4-	12.64	159	AlF4-	19.72
		100	KSO4-	0.85	170	H3SiO4-	-9.93
		101	KHPO4-	12.64	171	$H_2 sio_4^{-2}$	-21.62
		116	FeOH+2	-2.19	172	siF6-2	30.18
		117	$Fe(OH)_2^+$	-5.67	173	SiF4(aq)	21.20
		118	Fe(OH)3	-13.60			

^a Logarithm of formation constant expressed in terms of master species. Example:  $H_4SiO_4 + 4H^+ + 6F^- - 4H_2O --> SiF_6^{-2}$ , Log K = 30.18

# Table 31. Stoichiometries for Ion Activity Product Computations by "LOOK MIN" Procedure

LOOK MIN	Reaction Stoichiometry
GYPSUM	$CaSO_4 \cdot 2H_2O = Ca^{+2} + SO_4^{-2} + 2H_2O$
ANHYDRITE	$CaSO_4 = Ca^{+2} + SO_4^{-2}$
NA2SIF6	$Na_2SiF_6 = 2 Na^+ + H_4SiO_4 + 6 F^- + 4 H^+ - 4 H_2O$
K2SIF6	$K_2 SiF_6 = 2 K^+ + H_4 SiO_4 + 6 F^- + 4 H^+ - 4 H_2O$
NAKSIF6	$NaKSiF_6 = Na^+ + K^+ + H_4SiO_4 + 6 F^- + 4 H^+ - 4 H_2O$
FLUORITE	$CaF_2 = Ca^{+2} + 2 F^{-1}$
QUARTZ	$sio_2 = H_4 sio_4 - 2 H_2 o$
SIO2 GEL	$SiO_2(amorph) = H_4SiO_4 - 2 H_2O$
CHUKHROV	$Ca_4SO_4AlsiF_{13} \cdot 10H_2O =$
	$4 \text{ Ca}^{+2} + \text{Al}^{+3} + 4 \text{ H}^{+} + \text{H}_4\text{SiO}_4 + 6 \text{H}_2\text{O} + \text{SO}_4^{-2} + 13 \text{ F}^{-1}$
STRENGIT	$FePO_4 \cdot 2H_2O = Fe^{+3} + PO_4^{-3} + 2 H_2O$
VARISCIT	$Alpo_4 \cdot H_2 O = Al^{+3} + PO_4^{-3} + 2 H_2 O$
BRUSHITE	$CaHPO_4 \cdot H_2O = Ca^{+2} + HPO_4^{-2} + 2 H_2O$
STRUVITE	$MgNH_4PO_4 \cdot 6H_2O = Mg^{+2} + NH_4^+ + PO_4^{-3} + 6 H_2O$
N-FE-PO4	$Fe_{3}NH_{4}H_{8}(PO_{4})_{6}\cdot 6H_{2}O = Fe^{+3} + NH_{4}^{+} + 8 H^{+} + 6 PO_{4}^{-3} + 6 H_{2}O$
K-FE-PO4	$Fe_3KH_8(PO_4)_6 \cdot 6H_2O = Fe^{+3} + K^+ + 8 H^+ + 6 PO_4^{-3} + 6 H_2O$
FLUORAP	$Ca_5(PO_4)_{3F} = 5 Ca^{+2} + 3 HPO_4^{-2} + F^{-} - 3 H^{+}$
HYDROXAP	$Ca_5(PO_4)_{3OH} = 5 Ca^{+2} + 3 HPO_4^{-2} + H_2O - 4 H^+$

# Table 32. Equilibria Calculations with PHREEQE

#### Species in Solutions Collected 2/89

		Sample	D2-1	Sample	D4-1	Sample	e R1-1	Sample	R4-1	Sample	s4-1
No.	Species	Molality	Activity								
4	Ca ⁺²	0.01859	0.00501	0.01587	0.00418	0.01478	0.00381	0.01547	0.00409	0.01429	0.00375
5	_{Mg} +2	0.00610	0.00183	0.00968	0.00285	0.00746	0.00217	0.01102	0.00325	0.00998	0.00293
6	Na ⁺	0.10750	0.07671	0.08531	0.06059	0.09774	0.06917	0.08986	0.06385	0.09480	0.06728
7	K+	0.01072	0.00705	0.00865	0.00562	0.01111	0.00712	0.00891	0.00580	0.01028	0.00666
13	H4SiO4	0.00045	0.00050	0.00235	0.00262	0.01008	0.01136	0.01417	0.01573	0.00704	0.00785
16	s04 ⁻²	0.02364	0.00526	0.02529	0.00538	0.04102	0.00827	0.02598	0.00554	0.02893	0.00608
20	F	0.00029	0.00021	0.00021	0.00015	0.00017	0.00013	0.00015	0.00011	0.00017	0.00013
23	NH4+	0.02261	0.01651	0.03041	0.02223	0.11720	0.08601	0.03252	0.02377	0.02475	0.01810
40	HSO4 -	0.01601	0.01169	0.01965	0.01437	0.02623	0.01925	0.01980	0.01448	0.02122	0.01552
52	NH4SO4-	0.00153	0.00112	0.00211	0.00154	0.01248	0.00916	0.00232	0.00170	0.00194	0.00142
66	H2P04 ⁻	0.10470	0.07641	0.08471	0.06193	0.08888	0.06524	0.09076	0.06634	0.11350	0.08304
67	Нзро4	0.22410	0.24610	0.21590	0.23980	0.19520	0.22000	0.22620	0.25110	0.27560	0.30710
69	HF(aq)	0.00655	0.00719	0.00550	0.00611	0.00402	0.00453	0.00400	0.00443	0.00445	0.00495
78	CaSO4	0.00489	0.00537	0.00412	0.00458	0.00570	0.00642	0.00416	0.00461	0.00417	0.00464
81	CaH2PO4+	0.01342	0.00980	0.00907	0.00663	0.00867	0.00636	0.00949	0.00694	0.01089	0.00797
88	MgSO4	0.00155	0.00171	0.00246	0.00273	0.00283	0.00320	0.00289	0.00321	0.00285	0.00317
91	MgH2PO4 ⁺	0.00622	0.00454	0.00788	0.00576	0.00629	0.00462	0.00962	0.00703	0.01085	0.00794
92	MgF ⁺	0.00004	0.00003	0.00004	0.00003	0.00003	0.00002	0.00003	0.00002	0.00003	0.00002
97	NaSO4 ⁻	0.00277	0.00202	0.00223	0.00163	0.00391	0.00287	0.00243	0.00177	0.00280	0.00205
100	KSO4-	0.00036	0.00026	0.00029	0.00021	0.00057	0.00042	0.00031	0.00023	0.00039	0.00029
128	FeH2P04 ⁺²	0.00453	0.00129	0.00780	0.00223	0.00331	0.00096	0.00769	0.00220	0.00767	0.00220
129	FeF ⁺²	0.00007	0.00002	0.00011	0.00003	0.00004	0.00001	0.00008	0.00002	0.00007	0.00002
130	FeF2 ⁺	0.00025	0.00018	0.00026	0.00019	0.00008	0.00006	0.00013	0.00010	0.00014	0.00010
131	FeFz	0.00006	0.00006	0.00004	0.00005	0.00001	0.00001	0.00002	0.00002	0.00002	0.00002
156	Alf ⁺²	0.00002	0.00001	0.00009	0.00002	0.00015	0.00004	0.00015	0.00004	0.00016	0.00004
157	ALF2+	0.00084	0.00062	0.00280	0.00205	0.00427	0.00313	0.00361	0.00264	0.00429	0.00314
158	AlF3	0.00222	0.00244	0.00516	0.00573	0.00662	0.00746	0.00494	0.00548	0.00670	0.00746
159	AlF4	0.00036	0.00026	0.00059	0.00043	0.00065	0.00048	0.00042	0.00031	0.00065	0.00048
172	sif6 ⁻²	0.07098	0.02017	0.09644	0.02755	0.09091	0.02638	0.08892	0.02538	0.09040	0.02589
173	SiF4(aq)	0.00042	0.00047	0.00115	0.00128	0.00150	0.00169	0.00192	0.00213	0.00150	0.00167

#### Table 32 (continued)

10	AL ⁺³	80	CaHPO4	117	Fe(OH)2+	150	ALOH+2
19	P04-3	82	CaF ⁺	118	Fe(OH)3	151	Al(OH)2 ⁺
24	Fe ⁺³	85	MgOH ⁺	119	Fe(OH)4	152	Al(OH)3
50	NH3(aq)	89	MgPO4 ⁻	120	Fe2(OH)2 ⁺⁴	153	Al (OH)4 ⁻
65	HP04-5	90	MgHPO4	121	Fe3(OH)4 ⁺⁵	154	AlSO4 ⁺
70	HF2 ⁻	98	NaHPO4 ⁻	125	FeSO4 ⁺	155	Al(S04)2-
75	CaOH+	101	кнро4-	126	Fe(\$04)2 ⁻	170	H3SiO4 ⁻
79	CaPO4 ⁻	116	FeOH ⁺²	127	FeHPO4 ⁺	171	H ₂ si04 ⁻²

## Species with Concentrations Below 0.00001 Molal

## Computed Solubility Indices

		Sample	Sample	Sample	Sample	Sample
Phase	Log KT	D2-1	D4-1	R1-1	R4-1	s4-1
CaSO4 • 2H2O	-4.603	0.01	-0.06	0.09	-0.05	-0.05
CaSO4	-4.384	-0.20	-0.26	-0.12	-0.26	-0.26
Na ₂ SiF6	-34.300	0.19	0.13	0.22	0.13	0.19
K ₂ SiF ₆	-36.170	-0.01	-0.07	0.12	-0.08	0.05
CaF2	-10,960	1.32	0.94	0.76	0.67	0.75
Fluoroapatite	-17.600	-12.70	-14.00	-13.85	-14.03	-13.81
Hydroxyapatite	-3.421	-21.58	-22.80	-22.52	-22.69	-22.52
SiO ₂ (quartz)	-4.006	0.71	1.43	2.07	2.21	1.91

According to the computed concentrations, undissociated phosphoric acid and the  $H_2PO_4^-$  are the important P-containing species in solution. Most F is tied up as fluosilicate ions, but complexes with Al, particularly AlF₃, are important species that influence the distribution of F in solution. Estimated HF concentrations are two to three times higher than estimated SiF₄ concentrations.

The computed SI values show that the solutions were saturated with gypsum, as expected. The SI values also indicate that solutions were saturated with Na₂SiF₆. Only two solutions (Rl-1 and S4-1) had positive SI's for K₂SiF₆. Negative SI values for the two apatite compounds indicate undersaturation. Computed positive SI's for CaF₂ and quartz indicate the solutions are supersaturated with these two materials. Although amorphous silica was detected in some solids filtered from collected samples, CaF₂ was not found in solids taken shortly after sample collections or *in* solids that precipitated during storage of the samples.

In comparing results from the PHREEQE computations with the findings from sediment characterizations, one notes that the two samples (D4-1 and R4-1) in which Na₂SiF₆ was not detected had the lowest computed SI values for this compound. The sample R1-1 with a positive SI value for gypsum was the only sample for which there was a definite identification of gypsum by XRD characterization. Considering the relative insensitivity of the XRD method when examining a complex mixture of materials, there is the likelihood that undetected amounts of gypsum and sodium fluosilicate were present in all samples. Thus, for these compounds there is a qualitative agreement between the model and the observations. All five sediments contained chukhrovite. As mentioned above, no value for a solubility product constant was available in the PHREEQE database for this compound and no SI value was computed. Likewise, Fe₃(H,NH₄,K)H₈(PO₄)₆·6H₂O was detected in all five sediments, but no K_{sp} values were in the PHREEQE database and SI values were not computed.

Based on these cursory comparisons, the computed models agreed with the major characteristics of the sediments. Phosphate and fluoride distributions in solution were consistent with known chemical information, and the solubility computations indicated saturation with the expected solids. Lack of data to formulate a more extensive model formulation and low sensitivity of methods for analyzing mixed solids obstructed more rigorous comparisons.

## COMPUTATIONS WITH COLLECTED SAMPLE DATA

Computations were made with the mean composition data for all 18 samples collected in May 1988 to obtain an overview of gypsum pond water sample speciations and solubility states. Outputs from computations on the six return water samples are given in Appendix B to illustrate the type information generated by PHREEQE. Each output lists the experimental conditions (concentrations, pH, temperature, and a mean value of pe determined from redox potentials measured with an Orion 96-78-00 electrode); information derived from these data (e.g., ionic strength, electrical ion balance); and the distribution of chemical species (computed concentrations, activities, and activity coefficients). Results for return water and slurry water samples were similar to those of the return water samples except for minor variations in species distributions because of the differences in compositions.

The list of solids to be considered with the LOOK MIN procedure was expanded for these computations by adding solubility product constants for several metal phosphate minerals. Stoichiometric expressions were included for cases in which values for solubility product constants were not available; values of LOG KT for these entries were arbitrarily set equal to zero). Information about saturation states generated with this procedure for 18 pond water samples is summarized in Appendix C. Solution phase species activities for the six return water samples were averaged. These averages are listed in Table 33 to show the relative importances of the soluble complexes. Undissociated phosphoric acid and the  $H_2PO_4^-$  ion account for about 95% of the total phosphate in the system. The remaining 5% is accounted for by complexes of  $H_2PO_4^-$  with Ca⁺ (3%), Mg⁺ (1.5%), and Fe⁺³ (0.5%). Most fluorine is complexed with Si or Al-about 80% as SiF₆⁻², 8% as AlF₃, 6% as SiF₄, and 3% as AlF₂⁻. HF(aq) accounts for an additional 2% of the total moles F in the solution.

#### ESTIMATES OF SOLUBILITY PRODUCT CONSTANTS

Inspections of the solubility data in Appendix C showed patterns similar to those found with solutions collected with sediment samples. Table 34 contains a statistical summary of these data. Inspections of SI values show that, on average, the pond water solutions are well under the saturation limits for the phosphate compounds hydroxyapatite, fluorapatite, struvite, brushite, and variscite. They are slightly under saturation limits for anhydrite and potassium fluosilicate. Mean SI's for strengite, fluorite and silica (expressed as amorphous silica gel) indicate that solution conditions exceed the saturation limits for these compounds. Solutions appear to be just at the saturation limits for gypsum and sodium fluosilicate.

The data were used to obtain estimates of the solubility products for compounds that were detected in sample sediments but for which no solubility constants could be found in the literature. Since chukhrovite, NaKSiF₆, Na₂SiF₆, and the (K,NH₄,H) ferric phosphate were detected in several solid phases collected from the pond water samples, it was assumed that the solutions were saturated with these compounds. Therefore, the SI values should equal zero and the computed LOG IAP values should equal the solubility product constants for the compounds. The two sets of LOG IAP data in Table 34 were obtained by different ways. The first was the mean of results from all 18 samples. This assumes all samples were in equilibrium with the compounds of interest and provides a mean based on the maximum available data. For the second set, mean LOG IAP's were computed only for samples in which the compound of interest had been definitely detected by materials characterizations. These values should be very close to the "true" values of the solubility products but are based on fewer data.

Comparisons of the results from the PHREEQE IAP computations with solubility product constants that were available in the literature provide a measure of reliability in the assumption that computed IAP's are estimators of solubility product constants for compounds detected in the sediments. Values of solubility constants estimated from sources other than the current experimentation are available for only two compounds detected in sediments, gypsum and Na₂SiF₆, and only the value for gypsum is based on a critical review of determinations reported in the literature. LOG IAP values for gypsum computed from all 18 samples and from samples in which positive identifications of gypsum were reported are -4.56 and -4.55, respectively. The standard deviation is approximately 0.05. The value for LOG KT of gypsum is -4.603. Clearly, experimental error and uncertainties in the methods used to make ionic strength corrections in ion activity coefficients can account for the difference of about 0.05 unit in the values for gypsum. Thus, the estimate from the PHREEQE computation is in good agreement with the literature value. LOG IAP values for Na₂SiF₆ are -34.34 and -34.21, and the mean of these is -34.27. This is to be compared with LOG(KT) = -34.30 estimated from reported solubility data. Again, considering experimental error and uncertainties introduced by ionic strength corrections the agreement is very good.

Table 33. PHREEQE Chemical Model--Average Species Activities in Return Water Samples

No.	Species	Activity	No.	Species	Activity	No.	Species	Activity
 3	 Н ₂ О	9.89E-01	 128	FeH2P04 ⁺²	1.14E-03	101	кнро4-	1.50E-09
67	H ₃ PO4	1.56E-01	100	kso4-	2.13E-04	123	FeCl2 ⁺	1.33E-09
13	H4SiO4	6.08E-02	159	AlF4-	1.93E-04	50	NH3 AQ	8.07E-10
6	Na ⁺	6.01E-02	20	F	1.04E-04	117	$Fe(OH)_2^+$	4.61E-10
66	H ₂ PO ₄ -	4.88E-02	130	FeF2 ⁺	5.74E-05	170	H3SiO4-	3.35E-10
23	NH4 ⁺	2.87E-02	156	AlF+2	3.84E-05	150	Aloh+2	1.76E-11
1	н+	2.10E-02	129	FeF ⁺²	1.36E-05	2	e-	3.98E-12
172	SiF6-2	1.92E-02	92	MgF ⁺	1.20E-05	124	FeCl3	3.44E-12
40	HSO4-	1.16E-02	131	FeF3	9.96E-06	31	он-	5.03E-13
81	$CaH_2PO_4^+$	6.50E-03	82	CaF ⁺	4.65E-06	85	МдОН+	1.36E-13
14	cl-	6.04E-03	125	FeSO4 ⁺	3.92E-06	75	CaOH+	6.48E-14
78	CaSO4	5.85E-03	70	HF2-	1.21E-06	79	CaPO4-	4.50E-14
16	so ₄ -2	5.71E-03	126	Fe(S04)2 ⁻	7.23E-07	89	MgPO4-	2.07E-14
7	к+	5.25E-03	80	CaHPO4	3.95E-07	120	$Fe_{2}(OH)_{2}^{+4}$	2.04E-14
4	Ca ⁺²	5.17E-03	154	Also ₄ +	2.50E-07	151	AloH2+	6.26E-15
158	AlF3	3.79E-03	90	MgHPO4	1.97E-07	118	FeOH3	3.06E-16
91	MgH2PO4+	3.24E-03	65	$HPO_4-2$	1.39E-07	19	PO4-3	3.04E-18
69	HF(aq)	3.09E-03	155	$Al(so_4)_2^-$	1.29E-07	152	AlOH ₃	3.79E-19
52	NH4SO4-	2.40E-03	24	Fe ⁺³	8.44E-08	171	$H_2SiO_4^{-2}$	3.40E-20
173	SiF4(aq)	2.17E-03	10	A1+3	3.92E-08	121	$Fe_{3}(OH)_{4}^{+5}$	2.43E-21
157	AlF2 ⁺	2.05E-03	116	FeOH+2	2.67E-08	119	FeOH4 ⁻	1.86E-22
88	MgSO4	1.86E-03	98	NaHPO4-	1.68E-08	153	AloH4-	1.92E-24
5	Mg ⁺²	1.86E-03	122	FeC1+2	1.51E-08			
97	NaSO4-	1.72E-03	127	FeHPO4+	3.15E-09			

PHASE	LOG KT	Mean LOG IAP ^a	Std. _{Devn} a	c.v.ª	Mean LOG IAP ^b	Mean SI ^a
CHUKHROV	-	-78.781	0.189	0.2%	-78.757	-
K-Fe-PO4		-142.008	1.117	0.8%	-141.10	-
N-Fe-PO4	-	-141.413	1.260	0.9%	-140.43	-
NaKSiF6	-	-35.408	0.382	1.1%	-35.121	
Na ₂ SiF ₆	-34.300	-34.335	0.307	0.9%	-34.213	-0.03
GYPSUM	-4.603	-4.562	0.053	1.2%	-4.552	0.04
ANHYDRIT	-4.384	-4.552	0.054	1.2%		-0.17
K ₂ SiF ₆	-36.170	-36.480	0.467	1.3%	-	-0.31
FLUORITE	-10.960	-10.242	0.155	1.5%		0.72
SiO ₂ GEL	-3.018	-1.256	0.162	12.9%	-	1.76
STRENGIT	-26.430	-24.552	0.147	0.6%		1.88
VARISCIT	-22.520	-25.035	0.374	1.5%	-	-2.52
BRUSHITE	-6.600	-9.134	0.147	1.6%	-	-2.53
STRUVITE	-13.150	-21.988	0.529	2.48	<del>_</del> '	-8.84
FLUORAP	-17.600	-30.810	0.525	1.7%	-	-13.21
HYDROXAP	-3.421	-25.133	0.545	2.2%	-	-21.71

Table 34. Summary IAP's, SI's, and Solubility Product Estimates Computed from Mean Pond Water Sample Compositions

Solubility Product Constants (T =  $24^{\circ}$  to  $26^{\circ}$ C) Estimated from LOG IAP's

PHASE	LOG KT
CHUKHROV	-78.77
K-FE-PO4	-141.6
N-FE-PO4	-140.9
NaKSiF ₆	-35.26
Na ₂ SiF ₆	-34.27

a Computed from all 18 samples.

b Computed from samples with positive phase identifications only.

Since comparisons for gypsum and Na₂SiF₆ showed good agreement, the computed LOG IAP values for other compounds that had been detected in pond water sample sediments were used to estimate solubility products. These are given at the bottom of Table 34.

Log K values for chukhrovite estimated from means calculated from all 18 samples and from those in which positive identifications were made (-78.78 and -78.76, respectively) are in good agreement. Therefore, a value of -78.77 is taken as the best estimate for the solubility product constant of chukluovite at 25°C, according to the reaction stoichiometry given in Table 31. Values for the potassium and ammonium ferric phosphate compounds have poorer agreement, which is understandable considering uncertainties in the exact composition of the material detected in sediments. However, LOG IAP values provide "ballpark" estimates of -141.6 and -140.9 for LOG KT's of the potassium and ammonium forms, respectively. Agreement between the two computed LOG IAP's for NaKSiF₆ is moderately good, and the estimated LOG KT is -35.26.

#### CONCLUSIONS FROM COMPUTER MODELING STUDIES

As with any attempt to mathematically describe chemical equilibria, the reliability of the PHREEQE model depends on the reliabilities in the analytical data and the values of formation constants of various complex species included in the model. Criteria generated by PHREEQE to help judge the combined accuracies of the solution analytical data and the equilibrium constants of various soluble complexes in the model are the result of an ionic charge balance ("ELECTRICAL BALANCE" parameter in the outputs) and whether the computation converged in a finite number of iterations (default limit of PHREEQE is 200). In computations with the mean composition data of collected pond waters, results of the charge balance computations, which would be zero for an ideal situation, ranged from about -0.002 to about -0.08. Computations converged in less than 100 iterations, many in less than 50. Since ionic strengths computed by the model ranged from about 0.2 to about 0.5, a region where activity coefficients estimated by available mathematical approaches show significant deviations from experimental data, the quality with which the PHREEQE model fit the experimental data and estimated distributions of elements among the soluble complexes is relatively good. The distributions predicted by PHREEQE are consistent with the expectations that species most likely to be involved in gypsum pond equilibria are complexes of F with Si and Al.

The solubility states of the pond water solutions estimated by PHREEQE qualitatively agree with experimental observations. An exception was the prediction that strengite (FePO₄·2H₂O) should be precipitated, but this phase was not detected by direct examinations of the solids. Instead, an iron potassium /ammonium phosphate was found. The model also predicted precipitation of silica gel and only traces were reported in the materials characterizations. This is understandable since the amorphous gel is difficult to determine by the methods used.

Potentially valuable results from tests with the computer modeling are the estimates of solubility product constants for several compounds found in gypsum pond sediments-chukhrovite, alkali fluosilicates, and the ferric (K, NH₄) phosphates. The estimated values are internally consistent in that the relative standard deviations were on the order of 1% of the calculated means, and the compounds were observed in numerous collected solid phases. Furthermore, agreements between values estimated by the PHREEQE computations and other sources of data for gypsum and sodium fluosilicate, add confidence in the estimates.

Compound stoichiometries for chukhrovite and the ferric phosphates are vague and these values should be considered as "ballpark" estimates only. Other research on chukhrovite has determined that its composition is variable, depending on the mole ratio of Al to Si (personal communication, J. J. Kohler and S. J. Meischen, TVA Chemical Research Department). The stoichiometry used to calculate IAP's is likely to exist only in limited circumstances. Uncertainties in the exact compositions of the ferric phosphate compound exist because of the observed variations in the K and N contents of the collected solids, and an inability to resolve XRD data to specifically identify discrete phases.

In summary, results from tests with the PHREEQE program have shown good agreement with experimental observations. The program or similar modeling programs can be useful for exploring chemical equilibria in complex aquatic systems, particularly in situations where time or financial constraints prohibit direct experimentation and qualitative information is sufficient. When combined with experimental data, the program can be used to extract working estimates of solubility parameters.
#### REFERENCES

- 1. A. A. Linero and R. A. Baker, "Evaluation of Emissions and Control Techniques for Reducing Fluoride Emissions From Gypsum Ponds in the Phosphoric Acid Industry," EPA-600/2-78-124, June 1978.
- 2. F. L. Cross and R. W. Ross, J. Air Pollut. Con. Assoc., 19 (1), 15 (1969).
- 3. W. R. King and J. K. Farrell, "Fluoride Emissions From Phosphoric Acid Gypsum Ponds," EPA-650/2-74-095, October 1974.
- 4. B. S. Tatera, "Parameters Which Influence Fluoride Emissions From Phosphoric Acid Gypsum Ponds," Ph.D. Dissertation, University of Florida, 1970.
- 5. J. R. Lehr, "Fluorine Chemical Redistribution in Relation to Gypsum Storage Pond Systems," *Environ*mental Symposium Proceedings, The Fertilizer Institute, New Orleans, Louisiana, March 1978.
- 6. Z. G. Smirnova, N. Z. Nikitina, and V. V. Illarionov, "Partial Equilibrium Pressures of HF, SiF₄, H₂O Over Aqueous Solutions of Fluosilicic Acid," *Issled. V. Obl. Neorg. Teknol.*, 202-209 (1972).
- 7. Kirk-Othmer, Encyclopedia of Chemical Technology, 2nd ed., Vol. 9, p. 654, Interscience Publishers, 1966.
- 8. A. E. Z. Wissa, "Critique of Proposed Phosphate Industry Waste Storage Regulations," *Environmental Symposium Proceedings*, The Fertilizer Institute, New Orleans, Louisiana, April 1980.
- 9. J. F. Cochrane, "Hundred Fold Reduction in Permeability Under a Gypsum Stack," *Environmental Symposium Proceedings*, The Fertilizer Institute, New Orleans, Louisiana, April 1980.
- 10. Louis C. Murray, Jr., "Anion Attenuation From Phosphogypsum Leachate by Selected Soil Minerals," Master of Science Thesis, Northwestern University, June 1982.
- 11. Frazier, A. William, James R. Lehr, and Ewell F. Dillard, "Chemical Behavior of Fluorine in the Production of Wet-Process Phosphoric Acid," Bulletin Y-113, Tennessee Valley Authority, Muscle Shoals, AL, May 1977,19 pp.; published in part in *Environmental Science and Technology*, *11*, 1007 (1977).
- 12. V. G. Boscak, "Evaluation of Control Technology for the Phosphate Fertilizer Industry," EPA-600/2-79-169, August 1979.
- 13. Louis C. Murray, Jr. and Barbara-Ann G. Lewis, "Phosphogypsum Waste Anion Removal By Soil Minerals," J. Environ. Eng., 111 (5), 681,1985.
- 14. G. A. Kennedy, "Factors Influencing Reactions of Phosphate Rock Accessory Minerals Impurities During Acidulation," *Second International Congress on Phosphorus Compounds Proceedings*, Institut Mondial du Phosphate (IMPHOS), Boston, Massachusetts, April 21-25, 1980, pp. 433-441.
- 15. Jenne, Everett A. (ed.), *Chemical Modeling in Aqueous Systems*, ACS Symposium Series 93, American Chemical Society, Washington, D.C., 1979, 914 pp.
- 16. Melchior, Daniel C. and R. L. Bassett (eds.), *Chemical Modeling of Aqueous Systems II*, ACS Symposium Series 416, American Chemical Society, Washington, D.C., 1990, 556 pp.

- Plummer, L. Niel, Blair F. Jones, and Alfred H. Truesdell, "WATEQF: A FORTRAN IV Version of WATEQ, A Computer Program for Calculating Chemical Equilibrium of Natural Waters," User's Guide, USGS/WRI-76-13, U.S. Geological Survey, Water Resources Division, Reston, VA, (NTIS Report No. PB-261 027), September 1976, 61 pp.
- Ball, James W. and D. Kirk Nordstrom, "WATEQ4F-A Personal Computer FORTRAN Translation of the Geochemical Model WATEQ2 with Revised Data Base," USGS Open-File Report 87-50, U.S. Geological Survey, Menlo Park, CA, 1987, 108 pp.
- 19. Parkhurst, David L, Donald C. Thorstenson, and L. Niel Plummer, "PHREEQE A Computer Program for Geochemical Calculations," USGS/WRI-80-96, U.S. Geological Survey, Water Resources Division, Reston, VA, (NTIS Report No. PB81 167801), November 1980, 193 pp.
- Ball, James W., D. Kirk Nordstrom, and Everett A. Jenne, "Additional and Revised Thermochemical Data and Computer Code for WATEQ2-A Computerized Chemical Model for Trace and Major Element Speciation and Mineral Equilibria of Natural Waters," USGS/ WRI-78-116, U.S. Geological Survey, Water Resources Division, Reston, VA, January 1980, 109 pp.
- 21. Ciavatta, Liberato, Mauro Iuliano, and Raffaella Porto, "Fluorosilicate Equilibria in Acid Solution," *Polyhedron, 7,* 1773 (1988).
- 22. Borodin, P. M. and Nguen Kim Zao, "Equilibria in the Li₂SiF₆-HClO₄-H₂O System by the ¹⁹F Nuclear Magnetic Resonance Method," *Russian Journal of Inorganic Chemistry*, *16*, 1720 (1971).
- 23. Mathew, M., S. Takagi, K. R. Waerstad, and A. W. Frazier, "The Crystal Structure of Synthetic Chukhrovite, Ca₄AlSi(SO₄)F₁₃·12H₂O," *American Mineralogist, 66,* 392 (1981).
- 24. Linke, William F., *Solubilities. Inorganic and Metal-Organic Compounds*, 4th Edition, American Chemical Society, Washington, D.C., 1965, pp. 337-338, 1035-1038.

### Appendix A. REPLICATE DETERMINATIONS OF GYPSUM POND WATER SAMPLE COMPOSITIONS

	Sample Detn De		Density <		<	(		Weight %			>			>		
IDa	Number	Dateb	g/mL	pН	P205	F	S04S	Si	AL	Ca	Fe	κ	Mg	Na	NH4N	CL
																· · · · ·
DISCH	IARGE WA	TER SAM	IPLES													
- 4 4			4		4 07											
D1-1	PW103	88/06	1.032	1.58	1.97	1.10	0.268	0.270	0.0315	0.130	0.0269	0.040	0.030	0.220	0.210	0.030
D1-1	PW103	89/06			2.06	1.01	0.330	0.268	0.0290	0.118	0.0120	0.036	0.035	0.207	0.182	
D2-1	PU111	88706	1 031	1.64	2.33	0.81	0 104	0 217	0 0179	0 180	0 0340	በ በፈበ	0 020	0 240	0 134	0 160
D2-1	DU111	80/03	1.031	1104	2 37	0.01	0.154	0.2.7	0.0088	0.141	0.0258	0.040	0.020	0.240	0.032	0.100
		0,,05			2.07	0100	0.154	0.171	0.0000	0.141	0.0250	0.041	0.052	0.230	0.052	0.077
D3-1	PW116	88/06	1.008	1.94	0.47	0.40	0.108	0.104	0.0077	0.090	0.0079	0.020	0.004	0.120	0.050	0.010
D3-1	PW116	89/06			0.46	0.36	0.155	0.105	0.0070	0.082	0.0080	0.013	0.011	0.114	0.077	
D4-1	PW110	88/06	1.033	1.56	2.13	1.18	0.132	0.306	0.0390	0.190	0.0526	0.040	0.040	0.190	0.053	0.020
D4-1	PW110	89/03			2.18	1.10	0.170	0.265	0.0220	0.106	0.0431	0.033	0.046	0.191	0.043	0.006
D5-1	PW113	88/06	1.016	1.81	0.96	0.69	0.104	0.181	0.0234	0.110	0.0197	0.020	0.007	0.140	0.055	0.010
D5-1	PW113	89/06			0.96	0.59	0.150	0.174	0.0170	0.112	0.0160	0.018	0.018	0.134	0.075	
D/ 4	0.447		4 047	4 77/		0.7/	~ ~ ~ ~		0 0475							
D0-1	PW117	00/00	1.017	1.10	1.04	0.74	0.112	0.191	0.0135	0.140	0.0125	0.040	0.020	0.220	0.004	0.010
D0-1	PW117	00/11			1.05	0.74	0.150	0.200	0.0098	0.110	0.0100		0.022	0.210	0.003	0.010
D6-1	PW117	80/01			0.04	0 76										
D6-1	PW117	80/03			1 10	0.70	0 142	0 191	0 009/	0 110	0 0119	0 070	0 027	0 202	0 001	0.00/
00 1		07,05			1.10	0.00	0.102	0.101	0.0004	0.110	0.0115	0.030	0.025	0.202	0.001	0.000
RETUR	N WATER	SAMPLE	<u>s</u>													
R1-1	PW101	88/06	1.034	1.62	2.02	1.09	0.268	0.270	0.0308	0.120	0.0259	0.040	0.030	0.210	0.167	0.010
R1-1	PW101	89/02		1.64	2.02	1.05	0.280	0.271	0.0297	0.114	0.0180	0.043	0.038	0.221	0.171	0.013
D2-1	DU102	88706	1 072	1 5 9	2 54	0 92	0 174	0 210	0 0176	0 100	0.075/	0 0/0	0 070	0.0/0	0.057	0 400
R2-1	PU102	80/02	1.002	1.50	2.50	0.72	0.150	0.210	0.0176	0.170	0.0304	0.040	0.030	0.240	0.057	0.100
R2-1	PW102	89/06			2 54	0.69	0.122	0.201	0.0080	0.150	0.0320	0.050	0.030	0.220	0.040	0.071
		0,,00			2124	0.07	0.140	0.201	0.0000	0.150	0.0220	0.041	0.004	0.219	0.000	
R3-1	PW104	88/06	1.009	1.87	0.48	0.39	0.108	0.105	0.0084	0.090	0.0085	0.010	0.003	0.120	0.064	0.010
R3-1	PW104	89/02		1.89	0.48	0.42	0.169	0.111	0.0078	0.091	0.0079	0.012	0.020	0.129	0.057	0.010
R4-1	PW105	88/06	1.034	1.57	1.96	1.04	0.112	0.299	0.0405	0.190	0.0547	0.040	0.050	0.200	0.079	0.020
R4-1	PW105	88/11			2.15	1.05	0.180	0.270	0.0211	0.100	0.0375		0.047	0.210	0.053	0.012
R4-1	PW105	88/12			2.22											
R4-1	PW105	89/01			2.11	1.09										
R4-1	PW105	89/02		1.56	2.30	1.02	0.175	0.278	0.0232	0.110	0.0415	0.034	0.054	0.200	0.046	0.006
R4-1	PW105	89/06			2.31	0.95	0.167	0.264	0.0210	0.106	0.0310	0.036	0.052	0.186	0.062	
ог <i>1</i>	D114 4 T				•	• •-										
R2-1	PW115	88/06	1.017	1.80	0.97	0.65	0.100	0.169	0.0231	0.120	0.0188	0.020	0.009	0.150	0.056	0.010
ко-1	PW115	89/02		1.76	0.99	U.64	U.161	0.177	0.0194	0.122	0.0157	0.018	0.016	0.163	0.056	0.004

A-1

	Sample	Detn	Density	/	<					We	eight %					>
IDa	Number	Dateb	g/mL	рH	P205	F	\$04\$	Si	AL	Ca	Fe	к	Mg	Na	NH4N	CL
R6-1	PW108	88/06	1.018	1.69	1.08	0.73	0.116	0.196	0.0125	0.140	0.0115	0.040	0.020	0.200	0.006	0.009
R6-1	PW108	89/02		1.67	1.15	0.71	0.160	0.202	0.0113	0.124	0.0117	0.030	0.033	0.216	0.001	0.005
R1-2	PW201	90/01	1.030	1.68	2.19	0.98	0.260	0.233	0.0277	0.128	0.0217	0.022	0.038	0.215	0.207	0.014
R1-2	PW201	<b>9</b> 0/05			2.56	0.97	0.258	0.212	0.0266	0.117	0.0158	0.040	0.038	0.225	0.188	0.014
R1-2	PW201	90/08			2.29	1.01	0.262	0.247		0.127						
R1-2	PW201	90/08			2.22	1.00	0.256	0.247		0.126						
R3-2	PW212	90/01	1.003	1.93	0.46	0.32	0.139	0.084	0.0067	0.088	0.0076	0.011	0.008	0.114	0.052	0.011
R3-2	PW212	90/05			0.47	0.32	0.141	0.086	0.0071	0.086	0.0076	0.011	0.011	0.113	0.045	0.013
R3-2	PW212	90/07			0.46	0.32	0.132	0.088		0.090						
R4-2	PW207	<b>90/</b> 01	1.023	1.60	1.95	1.05	0.185	0.231	0.0319	0.171	0.0332	0.027	0.041	0.197	0.048	0.001
R4-2	PW207	90/05			2.10	0.97	0.170	0.224	0.0193	0.112	0.0315	0.033	0.041	0.187	0.047	0.005
R4-2	PW207	90/07			2.08	1.02	0.175	0.234		0.121						
R5-2	PW204	90/01	1.009	1.66	1.20	0.55	0.172	0.129	0.0203	0.117	0.0163	0.011	0.018	0.138	0.051	0.002
R5-2	PW204	90/05			1.16	0.53	0.167	0.128	0.0200	0.111	0.0143	0.015	0.018	0.133	0.045	0.004
R5-2	PW204	90/07			1.20	0.52	0.174	0.136		0.119						
R5-2	PW204	90/08			1.17	0.57	0.170	0.135		0.116						
R5-2	PW204	90/08			1.13	0.57	0.169	0.133		0.117						
R6-2	PW210	90/01	1.016	1.69	1.36	0.66	0.171	0.155	0.0121	0.136	0.0145	0.024	0.027	0.220	0.001	0.003
R6-2	PW210	90/05			1.43	0.62	0.157	0.163	0.0118	0.119	0.0141	0.037	0.027	0.214	0.002	0.005
R6-2	PW210	90/07			1.41	0.65	0.159	0.182		0.133						
R6-2	PW210	90/07			1.39	0.64	0.160	0.167		0.130						
R7-2	₽₩206	90/01	1.027	1.36	2.14	1.37	0.217	0.361	0.0316	0.207	0.0391	0.025	0.033	0.195	0.008	0.015
R7-2	PW206	90/05			2.09	1.30	0.222	0.322	0.0267	0.159	0.0337	0.034	0.032	0.186	0.009	0.011
R7-2	PW206	90/08			2.19	1.36	0.211	0.353		0.194						
R7-2	PW206	90/08			2.10	1.32	0.207	0.343		0.179						

SLURRY WATER SAMPLES

1.64 2.12 1.09 0.268 0.269 0.0351 0.120 0.0306 0.050 0.030 0.230 0.263 0.010 s1-1 PW109 88/06 1.034 s1-1 PW109 89/06 2.22 1.03 0.312 0.263 0.0330 0.119 0.0210 0.038 0.036 0.204 0.191 s2-1 PW118 88/06 1.030 1.74 2.27 0.77 0.100 0.195 0.0201 0.190 0.0374 0.040 0.020 0.240 0.041 0.150 S2-1 PW118 88/11 2.25 0.77 0.140 0.200 0.0160 0.160 0.0340 0.032 0.240 0.042 0.082 s2-1 PW118 88/12 2.27 s2-1 PW118 89/01 2.02 0.78 s2-1 PW118 89/03 2.30 0.69 0.161 0.185 0.0116 0.153 0.0320 0.041 0.029 0.234 0.028 0.107 0.54 0.109 0.184 0.0090 0.146 0.0290 0.042 0.031 0.224 0.041 S2-1 PW118 89/06 2.36 s3-1 PW107 88/06 1.009 1.88 0.52 0.55 0.112 0.145 0.0105 0.090 0.0097 0.020 0.003 0.200 0.061 0.010 \$3-1 PW107 90/05 0.62 0.170 0.130 0.0062 0.079 0.0105 0.016 0.011 0.198 0.062 0.010 0.54 \$3-1 PW107 90/08 0.54 0.56 0.168 0.137 0.083

	Sample Detn Density				<				Weight %					>			
IDa	Number	Dateb	g/mL	рН	P205	F	S04S	Si	Al	Ca	Fe	K	Mg	Na	NH4N	Cl	
										••••							
<b>s</b> 4-1	PW112	88/06	1.041	1.58	2.82	1.21	0.152	0.300	0.0519	0.200	0.0722	0.040	0.050	0.210	0.088	0.020	
s4-1	PW112	88/11			2.77	1.06	0.190	0.280	0.0301	0.120	0.0550		0.053	0.220	0.054	0.011	
\$4-1	PW112	88/12			2.75												
s4-1	PW112	89/01			2.59	1.09											
s4-1	PW112	89/03			2.78	1.04	0.187	0.260	0.0297	0.111	0.0413	0.039	0.054	0.206	0.035	0.006	
s5-1	PW106	88/06	1.021	1.75	1.14	0.90	0.132	0.220	0.0262	0.130	0.0229	0.030	0,010	0.210	0.071	0.010	
s5-1	PW106	90/05			1.19	0.85	0.171	0.188	0.0190	0.093	0.0185	0.030	0.019	0.220	0.194	0.005	
s5-1	PW106	90/08			1.15	0.89	0.168	0.194		0.100							
s6-1	PW114	88/06	1.016	1.87	1.07	0.42	0.072	0.124	0.0098	0.100	0.0095	0.040	0.020	0.220	0.006	0.010	
s6-1	PW114	90/05			1.51	0.53	0.165	0.111	0.0073	0.096	0.0082	0.036	0.024	0.216	0.001	0.004	
s6-1	PW114	90/07			1.22	0.46	0.160	0.120		0.110							
s6-1	PW114	90/07			1.21	0.46	0.161	0.119		0.107							
s1-2	PW203	90/01	1.033	1.66	2.57	1.04	0.241	0.223	0.0430	0.133	0.0276	0.025	0.049	0.224	0.205	0.012	
												~ ~ ~ ~					
\$3-2	PW211	90/01	1.007	1.94	0.51	0.42	0.128	0.117	0.0056	0.095	0.0076	0.018	0.009	0.178	0.050	0.012	
<b>c</b> / 2	0000	00/01	1 000	1 40	1 90	1 07	0 170	0.250	0 0709	0 155	0 0712	0 020	0 070	0 195	0 0/0	0 001	
54-2	PW200	90/01	1.022	1.00	1.07	1.05	0.179	0.250	0.0306	0.155	0.0312	0.020	0.039	0.105	0.049	0.001	
\$5-2	PW202	90701	1 020	1 75	1 48	0 72	0 152	0 160	0 0195	0 141	0 0187	0 014	0 023	0 222	0 050	0 004	
37 2	FWLUL	,0,01	1.020	1.75	1.40	0.72	0.152	0.100	0.0175	0.141	0.0101	0.014	0.025	0.222	0.000	0.004	
s6-2	PW209	90/01	1.017	1.77	1.60	0.62	0.121	0.154	0.0136	0.144	0.0221	0.024	0.034	0.237	0.001	0.004	
s7-2	PW205	90/01	1.032	1.37	2.29	1.35	0.201	0.322	0.0382	0.187	0.0431	0.033	0.036	0.195	0.008	0.014	
_		-															

a Sample ID code = "AB-C", where

A = Sample type: R = Return from pond, D = Discharge to pond, S = Slurry decant or filtrate;

B = Collection site 1 through 7; and

C = Collection group: 1 = May 1988 and 2 = December 1989.

b Determination date = Year/Month of analyses.

#### Appendix B. PHREEQE Speciation Computations of Gypsum Pond-to-Plant Return Water Samples

#### Solution Compositions and Speciations for Sample R1-1

#### TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
Ca	3.112521D-02	-1.5069
Mg	1.491549D-02	-1.8264
Na	1.001781D-01	9992
K	1.145369D-02	-1.9411
Al	1.197376D-02	-1.9218
Si	1.645736D-01	7836
Cl	3.608963D-03	-2.4426
S	9.111750D-02	-1.0404
Р	3.034641D-01	5179
F	6.005109D-01	2215
NH4	1.286796D-01	8905
FeIII	4.200267D-03	-2.3767

----DESCRIPTION OF SOLUTION----

PH = 1.6300 ACTIVITY H20 = .9854 IONIC STRENGTH = .5321 TEMPERATURE = 25.0000 ELECTRICAL BALANCE = -8.0305D-02 ITERATIONS = 75

# DISTRIBUTION OF SPECIES


I	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
1	H+	1.0	3.076E-02	-1.512	2.344E-02	-1.630	7.621E-01	118
4	Ca+2	2.0	1.585E-02	-1.800	4.074E-03	-2.390	2.569E-01	590
5	Mg+2	2.0	6.736E-03	-2.172	1.958E-03	-2.708	2.907E-01	536
6	Na+	1.0	9.629E-02	-1.016	6.812E-02	-1.167	7.074E-01	150
7	K+	1.0	1.089E-02	-1.963	6.958E-03	-2.158	6.388E-01	195
10	Al+3	3.0	8.884E-07	-6.051	7.700E-08	-7.114	8.667E-02	-1.062
13	H4SiO4	.0	6.919E-02	-1.160	7.821E-02	-1.107	1.130E+00	.053
14	cl-	-1.0	3.609E-03	-2.443	2.305E-03	-2.637	6.388E-01	195
16	SO4-2	-2.0	4.186E-02	-1.378	8.367E-03	-2.077	1.999E-01	699
19	PO4-3	-3.0	1.688E-16	-15.773	3.275E-18	-17.485	1.941E-02	-1.712
20	F-	-1.0	1.507E-04	-3.822	9.448E-05	-4.025	6.272E-01	203
23	NH4+	1.0	1.185E-01	926	6.930E-02	-1.159	5.848E-01	233
24	Fe+3	3.0	8.011E-07	-6.096	6.943E-08	-7.158	8.667E-02	-1.062
31	OH-	-1.0	6.734E-13	-12.172	4.223E-13	-12.374	6.272E-01	203
40	HSO4-	-1.0	2.591E-02	-1.587	1.903E-02	-1.720	7.346E-01	134
50	NH3 AQ	.0	1.491E-09	-8.826	1.686E-09	-8.773	1.130E+00	.053
52	NH4SO4-	-1.0	1.017E-02	-1.993	7.470E-03	-2.127	7.346E-01	134
65	HPO4-2	-2.0	9.820E-07	-6.008	1.703E-07	-6.769	1.734E-01	761
66	H2PO4-	-1.0	9.716E-02	-1.013	6.430E-02	-1.192	6.618E-01	179
67	нзро4	.0	1.875E-01	727	2.119E-01	674	1.130E+00	.053

### Sample R1-1 Distribution of Species (continued).

I	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
69	HF AQ	.0	2.892E-03	-2.539	3.269E-03	-2.486	1.130E+00	.053
70	HF2-	-1.0	1.598E-06	-5.796	1.174E-06	-5.930	7.346E-01	134
75	CaOH+	1.0	5.882E-14	-13.230	4.321E-14	-13.364	7.346E-01	134
78	CaSO4	.0	6.143E-03	-2.212	6.943E-03	-2.158	1.130E+00	.053
79	CaPO4-	-1.0	5.226E-14	-13.282	3.839E-14	-13.416	7.346E-01	134
80	CaHPO4	.0	3.365E-07	-6.473	3.804E-07	-6.420	1.130E+00	.053
81	CaH2PO4+	1.0	9.123E-03	-2.040	6.702E-03	-2.174	7.346E-01	134
82	CaF+	1.0	4.563E-06	-5.341	3.352E-06	-5.475	7.346E-01	134
85	MgOH+	1.0	1.801E-13	-12.745	1.323E-13	-12.878	7.346E-01	134
88	MgSO4	.0	2.578E-03	-2.589	2.914E-03	-2.536	1.130E+00	.053
89	MgPO4-	-1.0	3.389E-14	-13.470	2.489E-14	-13.604	7.346E-01	134
90	MgHPO4	.0	2.187E-07	-6.660	2.472E-07	-6.607	1.130E+00	.053
91	MgH2PO4+	1.0	5.585E-03	-2.253	4.103E-03	-2.387	7.346E-01	134
92	MgF+	1.0	1.664E-05	-4.779	1.222E-05	-4.913	7.346E-01	134
97	NaSO4-	-1.0	3.888E-03	-2.410	2.856E-03	-2.544	7.346E-01	134
98	NaHPO4-	-1.0	3.079E-08	-7.512	2.262E-08	-7.646	7.346E-01	134
100	KSO4-	-1.0	5.610E-04	-3.251	4.121E-04	-3.385	7.346E-01	134
101	KHPO4-	-1.0	3.145E-09	-8.502	2.310E-09	-8.636	7.346E-01	134
116	FeOH+2	2.0	6.499E-08	-7.187	1.893E-08	-7.723	2.913E-01	536
117	FeOH2+	1.0	3.570E-10	-9.447	2.623E-10	-9.581	7.346E-01	134
118	FeOH3	.0	1.146E-16	-15.941	1.295E-16	-15.888	1.130E+00	.053
119	FeOH4-	-1.0	7.413E-23	-22.130	5.446E-23	-22.264	7.346E-01	134
120	Fe2OH2+4	4.0	1.328E-12	-11.877	9.557E-15	-14.020	7.197E-03	-2.143
121	Fe30H4+5	5.0	1.168E-18	-17.933	5.238E-22	-21.281	4.486E-04	-3.348
122	FeCl+2	2.0	1.660E-08	-7.780	4.834E-09	-8.316	2.913E-01	536
123	FeCl2+	1.0	6.776E-11	-10.169	4.978E-11	-10.303	7.346E-01	134
124	FeCl3	.0	1.015E - 14	-13.993	1.147E - 14	-13.940	1.130E+00	.053
125	FeSO4+	1.0	6.577E-06	-5.182	4.832E-06	-5.316	7.346E-01	134
126	FeSO42-	-1.0	1.740E-06	-5.759	1.278E-06	-5.893	7.346E-01	134
127	FeHPO4+	1.0	4.272E-09	-8.369	3.139E-09	-8.503	7.346E-01	134
128	FeH2P+2	2.0	4.097E-03	-2.388	1.193E-03	-2.923	2.913E-01	536
129	FeF+2	2.0	3.569E-05	-4.447	1.040E-05	-4.983	2.913E-01	536
130	FeF2+	1.0	5.323E-05	-4.274	3.911E-05	-4.408	7.346E-01	134
131	FeF3	.0	5.181E-06	-5.286	5.856E-06	-5.232	1.130E+00	.053
150	AloH+2	2.0	1.137E-10	-9.944	3.312E-11	-10.480	2.913E-01	536
151	AloH2+	1.0	1.471E-14	-13.832	1.081E-14	-13.966	7.346E-01	134
152	Aloh3	.0	5.060E-19	-18.296	5.719E-19	-18.243	1.130E+00	.053
153	AloH4-	-1.0	3.273E-24	-23.485	2.404E-24	-23.619	7.346E-01	134
154	Also4+	1.0	9.183E-07	-6.037	6.746E-07	-6.171	7.346E-01	134
155	Als042-	-1.0	6.103E-07	-6.214	4.483E-07	-6.348	7.346E-01	134
156	AlF+2	2.0	2.556E-04	-3.592	7.444E-05	-4.128	2.913E-01	536
157	AlF2+	1.0	5.261E-03	-2.279	3.865E-03	-2.413	7.346E-01	134
158	Alf3	.0	6.016E-03	-2.221	6.800E-03	-2.167	1.130E+00	.053
159	AlF4-	-1.0	4.383E-04	-3.358	3.220E-04	-3.492	7.346E-01	134
170	H3S104-	-1.0	5.348E-10	-9.272	3.929E-10	-9.406	7.346E-01	134
171	H2S104-2	-2.0	1.179E-19	-18.928	3.435E-20	-19.464	2.913E-01	536
1/2	S1F6-2	-2.0	9.259E-02	-1.033	2.697E-02	-1.569	2.913E-01	536
173	S1F4 aq	.0	2.799E-03	-2.553	3.163E-03	-2.500	1.130E+00	.053

ELEMENT	MOLALITY	LOG MOLALITY
Ca	4.430155D-02	-1.3536
Mg	1.443605D-02	-1.8406
Na	1.054459D-01	9770
ĸ	1.087758D-02	-1.9635
Al	5.122800D-03	-2.2905
Si	1.265600D-01	8977
Cl	4.078646D-02	-1.3895
S	4.808143D-02	-1.3180
Р	3.745177D-01	4265
F	4.141377D-01	3829
NH4	3.872511D-02	-1.4120
FeIII	5.711518D-03	-2.2432

----DESCRIPTION OF SOLUTION----

PH = 1.6000 ACTIVITY H20 = .9862 IONIC STRENGTH = .4325 TEMPERATURE = 25.0000 ELECTRICAL BALANCE = -6.4268D-02 ITERATIONS = 42

# DISTRIBUTION OF SPECIES

Ι	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
1	H+	1.0	3.266E-02	-1.486	2.512E-02	-1.600	7.690E-01	114
4	Ca+2	2.0	2.308E-02	-1.637	6.147E-03	-2.211	2.664E-01	575
5	Mg+2	2.0	6.546E-03	-2.184	1.943E-03	-2.712	2.968E-01	527
6	Na+	1.0	1.031E-01	987	7.337E-02	-1.134	7.116E-01	148
7	К+	1.0	1.057E-02	-1.976	6.905E-03	-2.161	6.534E-01	185
10	Al+3	3.0	4.228E-07	-6.374	3.976E-08	-7.401	9.405E-02	-1.027
13	H4SiO4	.0	5.947E-02	-1.226	6.570E-02	-1.182	1.105E+00	.043
14	C1-	-1.0	4.079E-02	-1.389	2.665E-02	-1.574	6.534E-01	185
16	SO4-2	-2.0	2.138E-02	-1.670	4.644E-03	-2.333	2.172E-01	663
19	P04-3	-3.0	1.376E-16	-15.862	3.287E-18	-17.483	2.389E-02	-1.622
20	F-	-1.0	1.355E-04	-3.868	8.724E-05	-4.059	6.438E-01	191
23	NH4+	1.0	3.690E-02	-1.433	2.233E-02	-1.651	6.052E-01	218
24	Fe+3	3.0	8.574E-07	-6.067	8.063E-08	-7.093	9.405E-02	-1.027
31	OH-	-1.0	6.127E-13	-12.213	3.944E-13	-12.404	6.438E-01	191
40	HSO4-	-1.0	1.550E-02	-1.810	1.132E-02	-1.946	7.305E-01	136
50	NH3 AQ	.0	4.588E-10	-9.338	5.068E-10	-9.295	1.105E+00	.043
52	NH4SO4-	-1.0	1.829E-03	-2.738	1.336E-03	-2.874	7.305E-01	136
65	HPO4-2	-2.0	9.628E-07	-6.016	1.831E-07	-6.737	1.902E-01	721
66	Н2РО4-	-1.0	1.097E-01	960	7.409E-02	-1.130	6.756E-01	170
67	н3р04	- 0	2.369E_01	625	2.617E-01	582	1.105E+00	. 043

### Sample R2-1 Distribution of Species (continued)

I	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
69	HF AQ	.0	2.927E-03	-2.534	3.234E-03	-2.490	1.105E+00	.043
70	HF2-	-1.0	1.468E-06	-5.833	1.073E-06	-5.970	7.305E-01	136
75	CaOH+	1.0	8.338E-14	-13.079	6.090E-14	-13.215	7.305E-01	136
78	CaSO4	.0	5.264E-03	-2.279	5.815E-03	-2.235	1.105E+00	.043
79	CaP04-	-1.0	7.958E-14	-13.099	5.813E-14	-13.236	7.305E-01	136
80	CaHPO4	.0	5.587E-07	-6.253	6.172E-07	-6.210	1.105E+00	.043
81	CaH2PO4+	1.0	1.595E-02	-1.797	1.165E-02	-1.934	7.305E-01	136
82	CaF+	1.0	6.394E-06	-5.194	4.671E-06	-5.331	7.305E-01	136
85	MqOH+	1.0	1.678E-13	-12.775	1.226E-13	-12.912	7.305E-01	136
88	MqSO4	.0	1.453E-03	-2.838	1.605E-03	-2.795	1.105E+00	.043
89	MqPO4-	-1.0	3.393E-14	-13.469	2.479E-14	-13.606	7.305E-01	136
90	MgHPO4	.0	2.388E-07	-6.622	2.638E-07	-6.579	1.105E+00	.043
91	MaH2PO4+	1.0	6.422E-03	-2.192	4.691E-03	-2.329	7.305E-01	136
92	MaF+	1.0	1.533E-05	-4.814	1.120E-05	-4.951	7.305E-01	136
97	NaSO4-	-1.0	2.338E-03	-2.631	1.708E-03	-2.768	7.305E-01	136
98	NaHPO4-	-1.0	3.587E-08	-7.445	2.620E-08	-7.582	7.305E-01	136
100	KSO4-	-1.0	3.108E-04	-3.508	2.270E-04	-3.644	7.305E-01	136
101	KHPO4-	-1.0	3.375E-09	-8.472	2.466E-09	-8.608	7.305E-01	136
116	FeOH+2	2.0	7.212E-08	-7.142	2.053E-08	-7.688	2.847E-01	546
117	FeOH2+	1.0	3.638E-10	-9.439	2.657E-10	-9.576	7.305E-01	136
118	FeOH3	.0	1.110E-16	-15.955	1.226E-16	-15.912	1.105E+00	.043
119	FeOH4-	-1.0	6.588E-23	-22.181	4.813E-23	-22.318	7.305E-01	136
120	Fe2OH2+4	4.0	1.711E-12	-11.767	1.125E-14	-13.949	6.572E-03	-2.182
121	Fe30H4+5	5.0	1.604E-18	-17.795	6.243E-22	-21.205	3.892E-04	-3.410
122	FeCl+2	2.0	2.279E-07	-6.642	6.490E-08	-7.188	2.847E-01	546
123	FeCl2+	1.0	1.058E-08	-7.976	7.726E-09	-8.112	7.305E-01	136
124	FeCl3	.0	1.864E-11	-10.730	2.059E-11	-10.686	1.105E+00	.043
125	FeSO4+	1.0	4.264E-06	-5.370	3.115E-06	-5.507	7.305E-01	136
126	FeSO42-	-1.0	6.262E-07	-6.203	4.574E-07	-6.340	7.305E-01	136
127	FeHPO4+	1.0	5.366E-09	-8.270	3.920E-09	-8.407	7.305E-01	136
128	FeH2P+2	2.0	5.608E-03	-2.251	1.597E-03	-2.797	2.847E-01	546
129	FeF+2	2.0	3.916E-05	-4.407	1.115E-05	-4.953	2.847E-01	546
130	FeF2+	1.0	5.301E-05	-4.276	3.872E-05	-4.412	7.305E-01	136
131	FeF3	.0	4.846E-06	-5.315	5.354E-06	-5.271	1.105E+00	.043
150	AlOH+2	2.0	5.611E-11	-10.251	1.597E-11	-10.797	2.847E-01	546
151	AlOH2+	1.0	6.665E-15	-14.176	4.869E-15	-14.313	7.305E-01	136
152	Aloh3	.0	2.178E-19	-18.662	2.406E-19	-18.619	1.105E+00	.043
153	AloH4-	-1.0	1.293E-24	-23.888	9.448E-25	-24.025	7.305E-01	136
154	Also4+	1.0	2.647E-07	-6.577	1.934E-07	-6.714	7.305E-01	136
155	Also42-	-1.0	9.765E-08	-7.010	7.133E-08	-7.147	7.305E-01	136
156	AlF+2	2.0	1.247E-04	-3.904	3.550E-05	-4.450	2.847E-01	546
157	AlF2+	1.0	2.330E-03	-2.633	1.702E-03	-2.769	7.305E-01	136
158	Alf3	.0	2.502E-03	-2.602	2.764E-03	-2.558	1.105E+00	.043
159	AlF4-	-1.0	1.655E-04	-3.781	1.209E-04	-3.918	7.305E-01	136
170	H3SiO4-	-1.0	4.216E-10	-9.375	3.080E-10	-9.511	7.305E-01	136
171	H2Si04-2	-2.0	8.827E-20	-19.054	2.513E-20	-19.600	2.847E-01	546
172	SiF6-2	-2.0	6.479E-02	-1.188	1.845E-02	-1.734	2.847E-01	546
173	SiF4 aq	.0	2.298E-03	-2.639	2.538E-03	-2.595	1.105E+00	.043

ELEMENT	MOLALITY	LOG MOLALITY
Ca	2.321110D-02	-1.6343
Mg	5.047400D-03	-2.2969
Na	5.558491D-02	-1.2550
K	2.876186D-03	-2.5412
Al	3.069029D-03	-2.5130
Si	6.288587D-02	-1.2014
Cl	2.883561D-03	-2.5401
S	4.431495D-02	-1.3534
P	6.913965D-02	-1.1603
F	2.206221D-01	6564
NH4	4.454529D-02	-1.3512
FeIII	1.501053D-03	-2.8236

----DESCRIPTION OF SOLUTION----

PH = 1.8800 ACTIVITY H2O = .9946 IONIC STRENGTH = .2358 TEMPERATURE = 25.0000 ELECTRICAL BALANCE = -2.4498D-03 ITERATIONS = 43

### DISTRIBUTION OF SPECIES

I	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
1	H+	1.0	1.667E-02	-1.778	1.318E-02	-1.880	7.910E-01	102
4	Ca+2	2.0	1.468E-02	-1.833	4.506E-03	-2.346	3.069E-01	513
5	Mg+2	2.0	3.074E-03	-2.512	1.015E-03	-2.994	3.302E-01	481
6	Na+	1.0	5.393E-02	-1.268	3.964E-02	-1.402	7.350E-01	134
7	K+	1.0	2.762E-03	-2.559	1.930E-03	-2.714	6.988E-01	156
10	Al+3	3.0	5.587E-08	-7.253	6.773E-09	-8.169	1.212E-01	916
13	H4SiO4	.0	2.785E-02	-1.555	2.941E-02	-1.532	1.056E+00	.024
14	C1-	-1.0	2.884E-03	-2.540	2.015E-03	-2.696	6.988E-01	156
16	SO4-2	-2.0	2.248E-02	-1.648	6.171E-03	-2.210	2.746E-01	561
19	PO4-3	-3.0	7.518E-17	-16.124	3.261E-18	-17.487	4.338E-02	-1.363
20	F-	-1.0	2.020E-04	-3.695	1.400E-04	-3.854	6.932E-01	159
23	NH4+	1.0	4.158E-02	-1.381	2.764E-02	-1.558	6.648E-01	177
24	Fe+3	3.0	5.946E-07	-6.226	7.208E-08	-7.142	1.212E-01	916
31	OH-	-1.0	1.093E-12	-11.961	7.580E-13	-12.120	6.932E-01	159
40	HSO4-	-1.0	1.067E-02	-1.972	7.895E-03	-2.103	7.399E-01	131
50	NH3 AQ	.0	1.132E-09	-8.946	1.195E-09	-8.922	1.056E+00	.024
52	NH4SO4-	-1.0	2.970E-03	-2.527	2.197E-03	-2.658	7.399E-01	131
65	HPO4-2	-2.0	3.846E-07	-6.415	9.536E-08	-7.021	2.479E-01	606
66	Н2РО4-	-1.0	2.823E-02	-1.549	2.025E-02	-1.694	7.172E-01	144
67	нзро4	.0	3.555E-02	-1.449	3.753E-02	-1.426	1.056E+00	.024

### Sample R3-1 Distribution of Species (continued)

I	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
69	HF AQ	.0	2.579E-03	-2.588	2.723E-03	-2.565	1.056E+00	.024
70	HF2-	-1.0	1.959E-06	-5.708	1.450E-06	-5.839	7.399E-01	131
75	CaOH+	1.0	1.160E-13	-12.936	8.579E-14	-13.067	7.399E-01	131
78	CaSO4	.0	5.366E-03	-2.270	5.665E-03	-2.247	1.056E+00	.024
79	CaPO4-	-1.0	5.715E-14	-13.243	4.228E-14	-13.374	7.399E-01	131
80	CaHPO4	.0	2.231E-07	-6.651	2.356E-07	-6.628	1.056E+00	.024
81	CaH2PO4+	1.0	3.155E-03	-2.501	2.334E-03	-2.632	7.399E-01	131
82	CaF+	1.0	7.426E-06	-5.129	5.494E-06	-5.260	7.399E-01	131
85	MgOH+	1.0	1.663E-13	-12.779	1.231E-13	-12.910	7.399E-01	131
88	MgSO4	.0	1.055E-03	-2.977	1.114E-03	-2.953	1.056E+00	.024
89	MgPO4-	-1.0	1.737E-14	-13.760	1.285E-14	-13.891	7.399E-01	131
90	MgHPO4	.0	6.796E-08	-7.168	7.175E-08	-7.144	1.056E+00	.024
91	MgH2PO4+	1.0	9.051E-04	-3.043	6.696E-04	-3.174	7.399E-01	131
92	MgF+	1.0	1.269E-05	-4.897	9.389E-06	-5.027	7.399E-01	131
97	NaSO4-	-1.0	1.657E-03	-2.781	1.226E-03	-2.912	7.399E-01	131
98	NaHPO4-	-1.0	9.961E-09	-8.002	7.370E-09	-8.133	7.399E-01	131
100	KSO4-	-1.0	1.140E-04	-3.943	8.434E-05	-4.074	7.399E-01	131
101	KHPO4-	-1.0	4.851E-10	-9.314	3.589E-10	-9.445	7.399E-01	131
116	FeOH+2	2.0	1.177E-07	-6.929	3.527E-08	-7.453	2.996E-01	523
117	FeOH2+	1.0	1.186E-09	-8.926	8.772E-10	-9.057	7.399E-01	131
118	FeOH3	.0	7.365E-16	-15.133	7.776E-16	-15.109	1.056E+00	.024
119	FeOH4-	-1.0	7.929E-22	-21.101	5.866E-22	-21.232	7.399E-01	131
120	Fe20H2+4	4.0	4.116E-12	-11.386	3.318E-14	-13.479	8.062E-03	-2.094
121	Fe30H4+5	5.0	1.135E-17	-16.945	6.081E-21	-20.216	5.356E-04	-3.271
122	FeCl+2	2.0	1.464E-08	-7.835	4.386E-09	-8.358	2.996E-01	523
123	FeCl2+	1.0	5.336E-11	-10.273	3.948E-11	-10.404	7.399E-01	131
124	FeCl3	.0	7.535E-15	-14.123	7.956E-15	-14.099	1.056E+00	.024
125	FeSO4+	1.0	5.001E-06	-5.301	3.700E-06	-5.432	7.399E-01	131
126	FeSO42-	-1.0	9.759E-07	-6.011	7.221E-07	-6.141	7.399E-01	131
127	FeHPO4+	1.0	2.466E-09	-8.608	1.825E-09	-8.739	7.399E-01	131
128	FeH2P+2	2.0	1.302E-03	-2.885	3.901E-04	-3.409	2.996E-01	523
129	FeF+2	2.0	5.337E-05	-4.273	1.599E-05	-4.796	2.996E-01	523
130	FeF2+	1.0	1.205E-04	-3.919	8.913E-05	-4.050	7.399E-01	131
131	FeF3	.0	1.873E-05	-4.727	1.978E-05	-4.704	1.056E+00	.024
150	AloH+2	2.0	1.745E-11	-10.758	5.229E-12	-11.282	2.996E-01	523
151	AloH2+	1.0	4.139E-15	-14.383	3.062E-15	-14.514	7.399E-01	131
152	Aloh3	.0	2.755E-19	-18.560	2.909E-19	-18.536	1.056E+00	.024
153	AloH4-	-1.0	2.966E-24	-23.528	2.195E-24	-23.659	7.399E-01	131
154	Also4+	1.0	5.916E-08	-7.228	4.377E-08	-7.359	7.399E-01	131
155	Also42-	-1.0	2.900E-08	-7.538	2.146E-08	-7.668	7.399E-01	131
156	AlF+2	2.0	3.238E-05	-4.490	9.703E-06	-5.013	2.996E-01	523
157	Alf2+	1.0	1.009E-03	-2.996	7.465E-04	-3.127	7.399E-01	131
158	Alf3	.0	1.843E-03	-2.734	1.946E-03	-2.711	1.056E+00	.024
159	Alf4-	-1.0	1.845E-04	-3.734	1.365E-04	-3.865	7.399E-01	131
170	H3SiO4-	-1.0	3.551E-10	-9.450	2.627E-10	-9.581	7.399E-01	131
171	H2SiO4-2	-2.0	1.363E-19	-18.866	4.084E-20	-19.389	2.996E-01	523
172	SiF6-2	-2.0	3.451E-02	-1.462	1.034E-02	-1.985	2.996E-01	523
173	SiF4 aq	.0	5.233E-04	-3.281	5.525E-04	-3.258	1.056E+00	.024

ELEMENT	MOLALITY	LOG MOLALITY
Ca	3.368692D-02	-1.4725
Mg	2.230796D-02	-1.6515
Na	9.202445D-02	-1.0361
К	1.006072D-02	-1.9974
Al	6.934768D-03	-2.1590
Si	1.683224D-01	7739
Cl	3.898304D-03	-2.4091
S	5.272475D-02	-1.2780
P	3.265456D-01	4861
F	5.763755D-01	2393
NH4	4.555772D-02	-1.3414
FeIII	7.843009D-03	-2.1055

----DESCRIPTION OF SOLUTION----

PH = 1.5700 ACTIVITY H20 = .9869 IONIC STRENGTH = .4617 TEMPERATURE = 25.0000 ELECTRICAL BALANCE = -6.9376D-02 ITERATIONS = 73

# DISTRIBUTION OF SPECIES

I	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
1	H+	1.0	3.510E-02	-1.455	2.692E-02	-1.570	7.668E-01	115
4	Ca+2	2.0	1.869E-02	-1.728	4.919E-03	-2.308	2.631E-01	580
5	Mg+2	2.0	1.094E-02	-1.961	3.223E-03	-2.492	2.946E-01	531
6	Na+	1.0	8.986E-02	-1.046	6.381E-02	-1.195	7.100E-01	149
7	K+	1.0	9.758E-03	-2.011	6.331E-03	-2.199	6.488E-01	188
10	Al+3	3.0	6.336E-07	-6.198	5.805E-08	-7.236	9.162E-02	-1.038
13	H4SiO4	.0	7.462E-02	-1.127	8.299E-02	-1.081	1.112E+00	.046
14	Cl-	-1.0	3.898E-03	-2.409	2.529E-03	-2.597	6.488E-01	188
16	SO4-2	-2.0	2.335E-02	-1.632	4.941E-03	-2.306	2.116E-01	674
19	PO4-3	-3.0	1.057E-16	-15.976	2.365E-18	-17.626	2.238E-02	-1.650
20	F-	-1.0	1.328E-04	-3.877	8.480E-05	-4.072	6.385E-01	195
23	NH4+	1.0	4.330E-02	-1.364	2.593E-02	-1.586	5.987E-01	223
24	Fe+3	3.0	1.464E-06	-5.834	1.342E-07	-6.872	9.162E-02	-1.038
31	OH-	-1.0	5.769E-13	-12.239	3.684E-13	-12.434	6.385E-01	195
40	HSO4-	-1.0	1.765E-02	-1.753	1.290E-02	-1.889	7.313E-01	136
50	NH3 AQ	.0	4.938E-10	-9.306	5.492E-10	-9.260	1.112E+00	.046
52	NH4SO4-	-1.0	2.257E-03	-2.647	1.650E-03	-2.782	7.313E-01	136
65	HPO4-2	-2.0	7.644E-07	-6.117	1.412E-07	-6.850	1.848E-01	733
66	H2PO4-	-1.0	9.121E-02	-1.040	6.122E-02	-1.213	6.712E-01	173
67	нзро4	.0	2.083E-01	681	2.317E-01	635	1.112E+00	.046

### Sample R4-1 Distribution of Species (continued)

I	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
69	HF AO	.0	3.028E-03	-2.519	3.368E-03	-2.473	1.112E+00	.046
70	HF2-	-1.0	1.485E-06	-5.828	1.086E-06	-5.964	7.313E-01	136
75	CaOH+	1.0	6.224E-14	-13.206	4.551E-14	-13.342	7.313E-01	136
78	CaSO4	.0	4.451E-03	-2.352	4.951E-03	-2.305	1.112E+00	.046
79	CaPO4-	-1.0	4.578E - 14	-13.339	3.348E-14	-13,475	7.313E-01	136
80	CaHPO4	.0	3.425E-07	-6.465	3.809E-07	-6.419	1.112E+00	.046
81	CaH2PO4+	1.0	1.054E-02	-1.977	7.705E-03	-2.113	7.313E-01	136
82	CaF+	1.0	4.968E-06	-5.304	3.633E-06	-5.440	7.313E-01	136
85	MaOH+	1.0	2.597E-13	-12.585	1.899E-13	-12.721	7.313E-01	136
88	MgSO4	.0	2.547E-03	-2.594	2.832E-03	-2.548	1.112E+00	.046
89	MqPO4-	-1.0	4.047E-14	-13.393	2.960E-14	-13.529	7.313E-01	136
90	MgHPO4	.0	3.034E-07	-6.518	3.375E-07	-6.472	1.112E+00	.046
91	MgH2PO4+	1.0	8.794E-03	-2.056	6.430E-03	-2.192	7.313E-01	136
92	MgF+	1.0	2.470E-05	-4.607	1.806E-05	-4.743	7.313E-01	136
97	NaSO4-	-1.0	2.161E-03	-2.665	1.580E-03	-2.801	7.313E-01	136
98	NaHPO4-	-1.0	2.403E-08	-7.619	1.757E-08	-7.755	7.313E-01	136
100	KSO4-	-1.0	3.028E-04	-3.519	2.214E-04	-3.655	7.313E-01	136
101	KHPO4-	-1.0	2.384E-09	-8.623	1.743E-09	-8.759	7.313E-01	136
116	FeOH+2	2.0	1.116E-07	-6.952	3.191E-08	-7.496	2.860E-01	544
117	FeOH2+	1.0	5.275E-10	-9.278	3.857E-10	-9.414	7.313E-01	136
118	FeOH3	.0	1.494E-16	-15.826	1.662E-16	-15.779	1.112E+00	.046
119	FeOH4-	-1.0	8.332E-23	-22.079	6.093E-23	-22.215	7.313E-01	136
120	Fe20H2+4	4.0	4.062E-12	-11.391	2.716E-14	-13.566	6.686E-03	-2.175
121	Fe30H4+5	5.0	5.474E-18	-17.262	2.189E-21	-20.660	3.998E-04	-3.398
122	FeCl+2	2.0	3.584E-08	-7.446	1.025E-08	-7.989	2.860E-01	544
123	FeCl2+	1.0	1.583E-10	-9.800	1.158E-10	-9.936	7.313E-01	136
124	FeCl3	.0	2.633E-14	-13.580	2.928E-14	-13.533	1.112E+00	.046
125	FeSO4+	1.0	7.541E-06	-5.123	5.514E-06	-5.259	7.313E-01	136
126	FeSO42-	-1.0	1.178E-06	-5.929	8.615E-07	-6.065	7.313E-01	136
127	FeHPO4+	1.0	6.879E-09	-8.162	5.030E-09	-8.298	7.313E-01	136
128	FeH2P+2	2.0	7.679E-03	-2.115	2.196E-03	-2.658	2.860E-01	544
129	FeF+2	2.0	6.306E-05	-4.200	1.803E-05	-4.744	2.860E-01	544
130	FeF2+	1.0	8.325E-05	-4.080	6.087E-05	-4.216	7.313E-01	136
131	FeF3	.0	7.356E-06	-5.133	8.181E-06	-5.087	1.112E+00	.046
150	AloH+2	2.0	7.617E-11	-10.118	2.178E-11	-10.662	2.860E-01	544
151	AlOH2+	1.0	8.478E-15	-14.072	6.200E-15	-14.208	7.313E-01	136
152	Aloh3	.0	2.573E-19	-18.590	2.862E-19	-18.543	1.112E+00	.046
153	AloH4-	-1.0	1.435E-24	-23.843	1.049E-24	-23.979	7.313E-01	136
154	Also4+	1.0	4.107E-07	-6.386	3.003E-07	-6.522	7.313E-01	136
155	Also42-	-1.0	1.612E-07	-6.793	1.179E-07	-6.929	7.313E-01	136
156	AlF+2	2.0	1.761E-04	-3.754	5.037E-05	-4.298	2.860E-01	544
157	AlF2+	1.0	3.210E-03	-2.494	2.347E-03	-2.629	7.313E-01	136
158	Alf3	.0	3.332E-03	-2.477	3.706E-03	-2.431	1.112E+00	.046
159	AlF4-	-1.0	2.154E-04	-3.667	1.575E-04	-3.803	7.313E-01	136
170	H3S104-	-1.0	4.965E-10	-9.304	3.631E-10	-9.440	7.313E-01	136
171	H2S104-2	-2.0	9.669E-20	-19.015	2.765E-20	-19.558	2.860E-01	544
172	SiF6-2	-2.0	9.032E-02	-1.044	2.583E-02	-1.588	2.860E-01	544
173	SiF4 aq	.0	3.382E-03	-2.471	3.762E-03	-2.425	1.112E+00	.046

ELEMENT	MOLALITY	LOG MOLALITY
Ca	3.124362D-02	-1.5052
Mg	5.535431D-03	-2.2568
Na	7.067539D-02	-1.1507
K	5.029207D-03	-2.2985
Al	8.169910D-03	-2.0878
Si	1.019681D-01	9915
Cl	2.043378D-03	-2.6897
S	4.228641D-02	-1.3738
P	1.428937D-01	8450
F	3.540789D-01	4509
NH4	4.136530D-02	-1.3834
FeIII	3.205900D-03	-2.4940

----DESCRIPTION OF SOLUTION----

PH = 1.7800 ACTIVITY H2O = .9922 IONIC STRENGTH = .3084 TEMPERATURE = 25.0000 ELECTRICAL BALANCE = -2.3419D-02 ITERATIONS = 46

## DISTRIBUTION OF SPECIES

I	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
1	H+	1.0	2.125E-02	-1.673	1.660E-02	-1.780	7.810E-01	107
4	Ca+2	2.0	1.900E-02	-1.721	5.448E-03	-2.264	2.868E-01	542
5	Mg+2	2.0	3.116E-03	-2.506	9.750E-04	-3.011	3.129E-01	505
6	Na+	1.0	6.893E-02	-1.162	4.983E-02	-1.302	7.230E-01	141
7	K+	1.0	4.866E-03	-2.313	3.301E-03	-2.481	6.784E-01	168
10	Al+3	3.0	2.683E-07	-6.571	2.900E-08	-7.538	1.081E-01	966
13	H4SiO4	.0	4.672E-02	-1.331	5.015E-02	-1.300	1.074E+00	.031
14	cl-	-1.0	2.043E-03	-2.690	1.386E-03	-2.858	6.784E-01	168
16	SO4-2	-2.0	2.070E-02	-1.684	5.132E-03	-2.290	2.479E-01	606
19	PO4-3	-3.0	1.108E-16	-15.956	3.703E-18	-17.431	3.343E-02	-1.476
20	F-	-1.0	1.750E-04	-3.757	1.175E-04	-3.930	6.713E-01	173
23	NH4+	1.0	3.911E-02	-1.408	2.497E-02	-1.603	6.385E-01	195
24	Fe+3	3.0	8.266E-07	-6.083	8.935E-08	-7.049	1.081E-01	966
31	OH-	-1.0	8.948E-13	-12.048	6.006E-13	-12.221	6.713E-01	173
40	HSO4-	-1.0	1.128E-02	-1.948	8.264E-03	-2.083	7.326E-01	135
50	NH3 AQ	.0	7.992E-10	-9.097	8.580E-10	-9.067	1.074E+00	.031
52	NH4SO4-	-1.0	2.254E-03	-2.647	1.651E-03	-2.782	7.326E-01	135
65	HPO4-2	-2.0	6.173E-07	-6.210	1.363E-07	-6.865	2.208E-01	656
66	H2P04-	-1.0	5.216E-02	-1.283	3.644E-02	-1.438	6.986E-01	156
67	нзро4	.0	7.920E-02	-1.101	8.503E-02	-1.070	1.074E+00	.031

### Sample R5-1 Distribution of Species (continued)

I	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
69	HF AO	.0	2.679E-03	-2.572	2.876E-03	-2.541	1.074E+00	- 031
70	HF2-	-1.0	1.753E-06	-5.756	1.284E-06	-5.891	7.326E-01	_ 135
75	CaOH+	1.0	1.122E-13	-12,950	8.220E-14	-13.085	7.326E-01	- 135
78	CaSO4	.0	5.305E-03	-2.275	5.695E-03	-2.244	1.074E+00	135
79	CaPO4-	-1.0	7.924E - 14	-13,101	5.805E-14	_13 236	7 3268-01	- 135
80	CaHPO4	.0	3.793E-07	-6.421	4.072E-07	-6.390	1.074E+00	- 031
81	CaH2PO4+	1.0	6.933E-03	-2.159	5.0798-03	-2.294	7 326E_01	- 135
82	CaF+	1.0	7.608E-06	-5,119	5.573E-06	-5.254	7.326E-01	
85	MaOH+	1.0	1.279E-13	-12.893	9.367E - 14	-13.028	7.326E-01	- 135
88	MaSO4	.0	8.287E-04	-3.082	8.897E-04	-3.051	1.074E+00	133
89	MaPO4-	-1.0	1.913E-14	-13.718	1.401E - 14	-13.853	7 326E - 01	- 135
90	MaHPO4	.0	9.177E-08	-7.037	9.852E-08	-7 006	1 074E+00	135
91	MgH2PO4+	1.0	1.580E-03	-2.801	1.158E-03	-7.000	7 326E-01	_ 135
92		1.0	1.033E-05	-4 986	7 566F-06	-2.000	7.3265-01	135
97	NaSO4-	-1.0	1.750E-03	-2.757	1 282E-03	-2 892	7.326E-01	- 125
98	NaHPO4-	-1.0	1.808E-08	-7.743	1.325E-08	-7 878	7.326E-01	135
100	KSO4-	-1.0	1.637E-04	-3.786	1.199E-04	-3.921	7.326E-01	- 135
101	KHPO4-	-1.0	1.198E-09		$8.774E_{-10}$	-9 057	7.326E - 01	- 135
116	FeOH+2	2.0	1.203E-07	-6.920	3.465E-08	-7 460	7.520E-01	- 541
117	FeOH2+	1.0	9.321E-10	-9.031	6.829E - 10	-9.166	7 326E - 01	- 135
118	FeOH3		4.468E-16	-15.350	4.797E-16	-15 319	1 0745+00	133
119	FeOH4-	-1.0	3.915E-22	-21.407	2.868Em22	-21 542	7 326F-01	.031
120	Fe20H2+4	4.0	4.652E - 12	-11.332	3.202E-14	-13 495	6 883F_03	155
121	Fe30H4+5	5.0	1.092E - 17	-16,962	4.568E-21	-20 340	4 183E-04	-2.102
122	FeC1+2	2.0	1.299E-08	-7.886	3.741E-09	-8.427	2 880E_01	-5,578
123	FeCl2+	1.0	3.162E-11	-10.500	2.316E-11	-10.635	7.326E-01	- 135
124	FeC13	.0	2.991E-15	-14.524	3.211E-15	-14.493	1.074E+00	
125	FeSO4+	1.0	5.206E-06	-5.283	3.814E-06	-5.419	7.326E-01	- 135
126	FeSO42-	-1.0	8.448E-07	-6.073	6.189E-07	-6.208	7.326E-01	- 135
127	FeHPO4+	1.0	4.414E-09	-8.355	3.233E-09	-8.490	7.326E-01	- 135
128	FeH2P+2	2.0	3.021E-03	-2.520	8.703E-04	-3.060	2 880E_01	- 541
129	FeF+2	2.0	5.775E-05	-4.238	1.663E-05	-4.779	2.880E-01	-541
130	FeF2+	1.0	1.062E-04	-3.974	7.777E-05	-4.109	7.326E-01	- 135
131	FeF3	.0	1.349E-05	-4.870	1.448E-05	-4.839	1.074E+00	135
150	AlOH+2	2.0	6.159E-11	-10.210	1.774E - 11	-10.751	2.880E-01	- 541
151	AlOH2+	1.0	1.124E - 14	-13.949	8.233E-15	-14.084	7.326E-01	- 135
152	Aloh3	.0	5.772E-19	-18.239	6.197E - 19	-18.208	1 074E+00	031
153	AlOH4-	-1.0	5.058E-24	-23.296	3.705E-24	-23 431	7 3268-01	- 135
154	Also4+	1.0	2.127E-07	-6.672	1.558E-07	-6.807	7.326E-01	- 135
155	A1S042-	-1.0	8.670E-08	-7.062	6.351E-08	-7 197	7 3265-01	- 135
156	A1F+2	2.0	1.210E-04	-3.917	3.485E-05	-4.458	2 880E_01	- 5/1
157	AlF2+	1.0	3.071E-03	-2.513	2.2498-03	-2.648	7 3268-01	- 125
158	Alf3	.0	4.582E-03	-2.339	4 920E-03	-2.040	1 0745+00	135
159	AlF4-	-1.0	3.953E-04	-3,403	2.896E - 04	-2.500	7.3268-01	- 135
170	H3S104-	-1.0	4.858E-10	-9.314	3.559E = 10	-9.449	7.326E-01	135
171	H2S104-2	-2.0	1.526E-19	-18,816	4.395E-20	-19.357	2.880E_01	135
172	SiF6-2	-2.0	5.415E-02	-1.266	1.560E-02	-1.807	2.880E-01	-•341 541
173	SiF4 aq	.0	1.103E-03	-2.958	1.184E-03	-2.927	1.074E+00	.031

RT RVRNM	NOT NT THU	
ELEMENT	MOLALITY	LOG MOLALITY
Ca	3.421756D-02	-1.4658
Mg	1.154173D-02	-1.9377
Na	9.400068D-02	-1.0269
K	9.300644D-03	-2.0315
Al	4.582302D-03	-2.3389
Si	1.177576D-01	9290
Cl	2.051389D-03	-2.6880
S	4.471269D-02	-1.3496
Р	1.639550D-01	7853
F	3.937480D-01	4048
NH4	2.995045D-03	-2.5236
FeIII	2.158048D-03	-2.6659

----DESCRIPTION OF SOLUTION----

PH = 1.6800 ACTIVITY H2O = .9916 IONIC STRENGTH = .3325 TEMPERATURE = 25.0000 ELECTRICAL BALANCE = -3.4044D-02 ITERATIONS = 48

### DISTRIBUTION OF SPECIES

I	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
1	H+	1.0	2.685E-02	-1.571	2.089E-02	-1.680	7.783E-01	109
4	Ca+2	2.0	2.106E-02	-1.676	5.935E-03	-2.227	2.817E-01	550
5	Mg+2	2.0	6.570E-03	-2.182	2.028E-03	-2.693	3.087E-01	510
6	Na+	1.0	9.173E-02	-1.037	6.605E-02	-1.180	7.201E-01	143
7	K+	1.0	9.007E-03	-2.045	6.060E-03	-2.218	6.728E-01	172
10	Al+3	3.0	2.351E-07	-6.629	2.462E-08	-7.609	1.047E-01	980
13	H4SiO4	.0	5.407E-02	-1.267	5.837E-02	-1.234	1.080E+00	.033
14	c1-	-1.0	2.051E-03	-2.688	1.380E-03	-2.860	6.728E-01	172
16	SO4-2	-2.0	2.081E-02	-1.682	5.011E-03	-2.300	2.408E-01	618
19	PO4-3	-3.0	7.496E-17	-16.125	2.327E-18	-17.633	3.104E-02	-1.508
20	F-	-1.0	1.508E-04	-3.822	1.003E-04	-3.999	6.651E-01	177
23	NH4+	1.0	2.837E-03	-2.547	1.791E-03	-2.747	6.311E-01	200
24	Fe+3	3.0	5.804E-07	-6.236	6.079E-08	-7.216	1.047E-01	980
31	OH-	-1.0	7.169E-13	-12.145	4.768E-13	-12.322	6.651E-01	177
40	HSO4-	-1.0	1.389E-02	-1.857	1.016E-02	-1.993	7.313E-01	136
50	NH3 AQ	.0	4.526E-11	-10.344	4.886E-11	-10.311	1.080E+00	.033
52	NH4SO4-	-1.0	1.581E-04	-3.801	1.156E-04	-3.937	7.313E-01	136
65	HPO4-2	-2.0	5.047E-07	-6.297	1.078E-07	-6.967	2.137E-01	670
66	H2PO4-	-1.0	5.233E-02	-1.281	3.629E-02	-1.440	6.934E-01	159
67	H3P04	.0	9.875E-02	-1.005	1.066E-01	972	1.080E+00	.033

### Sample R6-1 Distribution of Species (continued)

I	SPECIES	Z	MOLALITY	LOG MOLAL	ACTIVITY	LOG ACT	GAMMA	LOG GAM
69	HF AQ	.0	2.865E-03	-2.543	3.092E-03	-2.510	1.080E+00	.033
70	HF2-	-1.0	1.612E-06	-5.793	1.179E-06	-5.928	7.313E-01	136
75	CaOH+	1.0	9.719E-14	-13.012	7.108E-14	-13.148	7.313E-01	136
78	CaSO4	.0	5.612E-03	-2.251	6.058E-03	-2.218	1.080E+00	.033
79	CaPO4-	-1.0	5.433E-14	-13.265	3.973E-14	-13.401	7.313E-01	136
80	CaHPO4	.0	3.250E-07	-6.488	3.509E-07	-6.455	1.080E+00	.033
81	CaH2PO4+	1.0	7.534E-03	-2.123	5.510E-03	-2.259	7.313E-01	136
82	CaF+	1.0	7.089E-06	5.149	5.184E-06	-5.285	7.313E-01	136
85	MqOH+	1.0	2.115E-13	-12.675	1.547E-13	-12.811	7.313E-01	136
88	MgSO4	.0	1.674E-03	-2.776	1.807E-03	-2.743	1.080E+00	.033
89	MgPO4-	-1.0	2.505E-14	-13.601	1.832E-14	-13.737	7.313E-01	136
90	MgHPO4	.0	1.502E-07	-6.823	1.621E-07	-6.790	1.080E+00	.033
91	MgH2PO4+	1.0	3.279E-03	-2.484	2.398E-03	-2.620	7.313E-01	136
92	MgF+	1.0	1.838E-05	-4.736	1.344E-05	-4.872	7.313E-01	136
97	NaSO4-	-1.0	2.268E-03	-2.644	1.659E-03	-2.780	7.313E-01	136
98	NaHPO4-	-1.0	1.899E-08	-7.721	1.389E-08	-7.857	7.313E-01	136
100	KSO4-	-1.0	2.939E-04	-3.532	2.150E-04	-3.668	7.313E-01	136
101	KHPO4-	-1.0	1.742E-09	-8.759	1.274E-09	-8.895	7.313E-01	136
116	FeOH+2	2.0	6.541E-08	-7.184	1.871E-08	-7.728	2.861E-01	544
117	FeOH2+	1.0	4.003E-10	-9.398	2.927E-10	-9.534	7.313E-01	136
118	FeOH3	.0	1.512E-16	-15.820	1.632E-16	-15.787	1.080E+00	.033
119	FeOH4-	-1.0	1.059E-22	-21.975	7.747E-23	-22.111	7.313E-01	136
120	Fe2OH2+4	4.0	1.394E-12	-11.856	9.339E-15	-14.030	6.697E-03	-2.174
121	Fe30H4+5	5.0	1.425E-18	-17.846	5.712E-22	-21.243	4.008E-04	-3.397
122	FeCl+2	2.0	8.857E-09	-8.053	2.534E-09	-8.596	2.861E-01	544
123	FeCl2+	1.0	2.136E-11	-10.670	1.562E-11	-10.806	7.313E-01	136
124	FeCl3	.0	1.997E-15	-14.700	<b>2.156E-15</b>	-14.666	1.080E+00	.033
125	FeSO4+	1.0	3.464E-06	-5.460	2.534E-06	-5.596	7.313E-01	136
126	FeSO42-	-1.0	5.490E-07	-6.260	4.015E-07	-6.396	7.313E-01	136
127	FeHPO4+	1.0	2.379E-09	-8.624	1.740E-09	-8.759	7.313E-01	136
128	FeH2P+2	2.0	2.061E-03	-2.686	5.896E-04	-3.229	2.861E-01	544
129	FeF+2	2.0	3.378E-05	-4.471	9.663E-06	-5.015	2.861E-01	544
130	FeF2+	1.0	5.276E-05	-4.278	3.858E-05	-4.414	7.313E-01	136
131	FeF3	.0	5.682E-06	-5.246	6.134E-06	-5.212	1.080E+00	.033
150	AloH+2	2.0	4.180E-11	-10.379	1.196E-11	-10.922	2.861E-01	544
151	AloH2+	1.0	6.024E-15	-14.220	4.406E-15	-14.356	7.313E-01	136
152	Aloh3	.0	2.438E-19	-18.613	2.632E-19	-18.580	1.080E+00	.033
153	AloH4-	-1.0	1.708E-24	-23.767	1.249E-24	-23.903	7.313E-01	136
154	Also4+	1.0	1.767E-07	-6.753	1.292E-07	-6.889	7.313E-01	136
155	A1S042-	-1.0	7.032E-08	-7.153	5.143E-08	-7.289	7.313E-01	136
156	AlF+2	2.0	8.834E-05	-4.054	2.527E-05	-4.597	2.861E-01	544
157	AlF2+	1.0	1.905E-03	-2.720	1.393E-03	-2.856	7.313E-01	136
158	A1F3	.0	2.410E-03	-2.618	2.602E-03	-2.585	1.080E+00	.033
159	ALF4-	-1.0	1.788E-04	-3.748	1.308E-04	-3.883	7.313E-01	136
170	H3S104-	-1.0	4.499E-10	-9.347	3.290E-10	-9.483	7.313E-01	136
1/1	H2S104-2	-2.0	1.128E-19	-18.948	3.227E-20	-19.491	2.861E-01	544
172	S1F6-2	-2.0	6.198E-02	-1.208	1.773E-02	-1.751	2.861E-01	544
т/3	sir4 aq	.0	1.709E-03	-2.767	1.845E-03	-2.734	1.080E+00	.033

Appendix C. PHREEQE Program Output--Computed Saturation-States of Mean Pond Water Sample Compositions

		Sample	D1-1	Sample	2 D2-1	Sample	e D3-1
PHASE	LOG KT	LOG IAP	SI	LOG IAP	SI	LOG IAP	SI
GYPSUM	-4.603	-4.436	0.167	-4.618	-0.015	-4.585	0.018
ANHYDRIT	-4.384	-4.423	-0.039	-4.606	-0.222	-4.580	-0.196
NA2SIF6	-34.300	-34.094	0.206	-34.100	0.200	-35.054	-0.754
K2SIF6	-36.170	-36.157	0.013	-36.174	-0.004	-37.241	-1.071
NAKSIF6	0.000	-35.125	-35.125	-35.137	-35.137	-36.148	-36.148
FLUORITE	-10.960	-10.476	0.485	-10.250	0.710	-10.013	0.948
FLUORAP	-17.600	-31.661	-14.061	-30.304	-12.704	-30.665	-13.065
HYDROXAP	-3.421	-26.029	-22.608	-24.657	-21.236	-24.907	-21.486
SIO2 GEL	-3.018	-1.094	1.924	-1.244	1.774	-1.516	1.503
STRENGIT	-26.430	-24.806	1.624	-24.504	1.926	-24.526	1.904
VARISCIT	-22.520	-24.655	-2.135	-24.920	-2.400	-25.646	-3.126
BRUSHITE	-6.600	-9.222	-2.622	-8.933	-2.333	-9.312	-2.712
STRUVITE	-13.150	-21.465	-8.315	-21.692	-8.541	-22.063	-8.913
CHUKHROV	0.000	-78.752	-78.752	-78.806	-78.806	-78.955	-78.955
N-FE-PO4	0.000	-141.002	-141.002	-140.283	-140.283	-142.658	-142.658
K-FE-PO4	0.000	-142.107	-142.107	-140.994	-140.994	-143.646	-143.646

		Sample D4-1		Sample D5-1		Sample D6-1	
PHASE	LOG KT	LOG IAP	SI	LOG IAP	SI	LOG IAP	SI
GYPSUM	-4.603	-4.579	0.023	-4.599	0.004	-4.535	0.068
ANHYDRIT	-4.384	-4.568	-0.184	-4.593	-0.209	-4.528	-0.144
NA2SIF6	-34.300	-34.154	0.146	-34.714	-0.414	-34.268	0.032
K2SIF6	-36.170	-36.127	0.043	-36.953	-0.783	-36.356	-0.186
NAKSIF6	0.000	-35.141	-35.141	-35.833	-35.833	-35.312	-35.312
FLUORITE	-10.960	-10.373	0.587	-10.134	0.826	-10.137	0.823
FLUORAP	-17.600	-31.181	-13.581	-30.475	-12.875	-30.597	-12.997
HYDROXAP	-3.421	-25.558	-22.137	-24.752	-21.331	-24.907	-21.486
SIO2 GEL	-3.018	-1.088	1.930	-1.261	1.757	-1.282	1.736
STRENGIT	-26.430	-24.463	1.967	-24.412	2.018	-24.709	1.721
VARISCIT	-22.520	-24.673	-2.153	-24.967	-2.447	-25.513	-2.993
BRUSHITE	-6.600	-9.119	-2.519	-9.135	-2.535	-9.142	-2.542
STRUVITE	-13.150	-21.934	-8.784	-21.932	-8.782	-23.142	-9.992
CHUKHROV	0.000	-78.545	-78.545	-78.535	-78.535	-78.881	-78.881
N-FE-PO4	0.000	-140.528	-140.528	-141.341	-141.341	-143.433	-143.433
K-FE-PO4	0.000	-141.043	-141.043	-142.285	-142.285	-142.778	-142.778

### Appendix C (continued)

		Sample R1-1		Sample R2-1		Sample R3-1	
PHASE	LOG KT	LOG IAP	SI	LOG IAP	SI	LOG IAP	SI
GYPSUM	-4.603	-4.480	0.123	-4.557	0.046	-4.561	0.042
ANHYDRIT	-4.384	-4.467	-0.083	-4.544	-0.160	-4.556	-0.172
NA2SIF6	-34.300	-34.083	0.217	-34.183	0.117	-34.969	-0.669
K2SIF6	-36.170	-36.064	0.106	-36.236	-0.066	-37.594	-1.424
NAKSIF6	0.000	-35.073	-35.073	-35.209	-35.209	-36.282	-36.282
FLUORITE	-10.960	-10.439	0.521	-10.330	0.630	-10.054	0.906
FLUORAP	-17.600	-31.391	-13.791	-30.528	-12.928	-31.007	-13.407
HYDROXAP	-3.421	-25.743	-22.322	-24.874	-21.453	-25.275	-21.854
SIO2 GEL	-3.018	-1.094	1.924	-1.170	1.848	-1.527	1.491
STRENGIT	-26.430	-24.656	1.774	-24.589	1.841	-24.634	1.796
VARISCIT	-22.520	-24.611	-2.091	-24.896	-2.376	-25.661	-3.141
BRUSHITE	-6.600	-9.172	-2.572	-8.961	-2.361	-9.371	-2.772
STRUVITE	-13.150	-21.390	-8.240	-21.882	-8.732	-22.053	-8.903
CHUKHROV	0.000	-78.736	-78.736	-78.968	-78.968	-78.930	-78.930
N-FE-PO4	0.000	-140.622	-140.622	-140.667	-140.667	-142.959	-142.959
K-FE-PO4	0.000	-141.620	-141.620	-141.177	-141.177	-144.115	-144.115

PHASE		Sample R4-1		Sample R5-1		Sample R6-1	
	LOG KT	LOG IAP	SI	LOG IAP	SI	LOG IAP	SI
GYPSUM	-4.603	-4.626	-0.023	-4.560	0.043	-4.534	0.069
ANHYDRIT	-4.384	-4.614	-0.230	-4.554	-0.170	-4.527	-0.143
NA2SIF6	-34.300	-34.158	0.142	-34.592	-0.292	-34.292	0.009
K2SIF6	-36.170	-36.165	0.005	-36.950	-0.780	-36.366	-0.196
NAKSIF6	0.000	-35.162	-35.162	-35.771	-35.771	-35.329	-35.329
FLUORITE	-10.960	-10.451	0.509	-10.124	0.836	-10.224	0.736
FLUORAP	-17.600	-31.453	-13.853	-30.505	-12.905	-30.993	-13.393
HYDROXAP	-3.421	-25.817	-22.396	-24.799	-21.378	-25.318	-21.897
SIO2 GEL	-3.018	-1.070	1.948	-1.293	1.725	-1.227	1.792
STRENGIT	-26.430	-24.510	1.920	-24.487	1.943	-24.857	1.573
VARISCIT	-22.520	-24.874	-2.354	-24.976	-2.456	-25.249	-2.729
BRUSHITE	-6.60.0	-9.170	-2.570	-9.136	-2.536	-9.201	-2.601
STRUVITE	-13.150	-21.738	-8.588	-22.065	-8.915	-23.095	-9.945
CHUKHROV	0.000	-79.101	-79.101	-78.414	-78.414	-78,774	-78.774
N-FE-PO4	0.000	-140.554	-140.554	-141.598	-141.598	-143.657	-143.657
K-FE-PO4	0.000	-141.166	-141.166	-142.477	-142.477	-143.128	-143.128

### Appendix C (continued)

		Sample S1-1		Sample S2-1		Sample S3-1	
PHASE	LOG KT	LOG IAP	SI	LOG IAP	SI	LOG IAP	SI
GYPSUM	-4.603	-4.474	0.129	-4.585	0.017	-4.599	0.003
ANHYDRIT	-4.384	-4.460	-0.076	-4.575	-0.191	-4.594	-0.210
NA2SIF6	-34.300	-34.078	0.222	-34.174	0.126	-34.428	-0.128
K2SIF6	-36.170	-36.028	0.142	-36.229	-0.059	-37.037	-0.867
NAKSIF6	0.000	-35.053	-35.053	-35.202	-35.202	-35.732	-35.732
FLUORITE	-10.960	-10.428	0.532	-10.151	0.809	-10.074	0.886
FLUORAP	-17.600	-31.216	-13.616	-29.609	-12.009	-31.130	-13.530
HYDROXAP	-3.421	-25.565	-22.144	-23.919	-20.498	-25.418	-21.997
SIO2 GEL	-3.018	-1.098	1.921	-1.242	1.776	-1.494	1.525
STRENGIT	-26.430	-24.561	1.869	-24.271	2.159	-24.553	1.877
VARISCIT	-22.520	-24.515	-1.995	-24.982	-2.462	-25.645	-3.125
BRUSHITE	-6.600	-9.125	-2.525	-8.809	-2.209	-9.382	-2.782
STRUVITE	-13.150	-21.237	-8.087	-21.778	-8.628	-22.274	-9.124
CHUKHROV	0.000	-78.656	-78.656	-78.773	-78.773	-78.899	-78.899
N-FE-PO4	0.000	-140.112	-140.112	-140.007	-140.007	-142.584	-142.584
K-FE-PO4	0.000	-141.216	-141.216	-140.379	-140.379	-143.522	-143.522

PHASE		Sample S4-1		Sample S5-1		Sample S6-1	
	LOG KT	LOG IAP	SI	LOG IAP	SI	LOG IAP	SI
GYPSUM	-4.603	-4.570	0.033	-4.616	-0.013	-4.599	0.004
ANHYDRIT	-4.384	-4.557	-0.173	-4.607	-0.223	-4.592	-0.208
NA2SIF6	-34.300	-34.063	0.237	-34.188	0.112	-34.431	-0.131
K2SIF6	-36.170	-36.064	0.106	-36.436	-0.266	-36.470	-0.300
NAKSIF6	0.000	-35.064	-35.064	-35.312	-35.312	-35.451	-35.451
FLUORITE	-10.960	-10.409	0.551	-10.190	0.770	-10.095	0.865
FLUORAP	-17.600	-30.980	-13.380	-30.884	-13.284	-30.006	-12.406
HYDROXAP	-3.421	-25.350	-21.929	-25.216	-21.795	-24.284	-20.863
SIO2 GEL	-3.018	-1.086	1.932	-1.319	1.699	-1.508	1.511
STRENGIT	-26.430	-24.346	2.084	-24.471	1.960	-24.590	1.840
VARISCIT	-22.520	-24.672	-2.152	-24.958	-2.438	-25.228	-2.708
BRUSHITE	-6.600	-9.037	-2.437	-9.184	-2.584	-9.004	-2.404
STRUVITE	-13.150	-21.664	-8.514	-21.677	-8.527	-22.697	-9.547
CHUKHROV	0.000	-78.801	-78.801	-78.516	-78.516	-79.010	-79.010
N-FE-PO4	0.000	-139.759	-139.759	-140.940	-140.940	-142.738	-142.738
K-FE-PO4	0.000	-140.327	-140.327	-141.987	-141.987	-142.173	-142.173